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Large parts of society are organized around the (non-market) exchange of information

and opinions: People gather around breakfast and dinner tables, in meeting rooms and

committees, cafés and bars, while keeping in permanent touch with friends, co-workers

and strangers through electronic messaging and social media. But while people constantly

seek out others’ views and knowledge, they do not seek out a wide range of different

viewpoints. Instead, they segregate into homogeneous communities and limit the number

of views they are exposed to.1

This poses a theoretical puzzle: If people put so much energy into seeking and ex-

changing information, why do they artificially limit both the diversity and the amount of

information available to themselves? It also poses a practical problem for society: The

segregation into “echo chambers” has widely been decried as being responsible for recent

populist insurgencies in the Western world.2

In this paper, we develop a general model of how people with different preferences and

different information rationally communicate in groups, and how they sort into groups

while anticipating what communication within the group will be like. Our analysis reveals

that segregation into small, homogeneous groups can be a rational choice that maximizes

the amount of information available to an individual. In fact, homophilic segregation can

be efficient and even Pareto-optimal for society.

Why is that? Our argument builds on the idea that people have not only different

information, but also different preferences. These differences in preferences can prevent

successful communication, because people do not want to reveal their information to those

who are different, and distrust the motives of those who speak to them. It then becomes

easier to exchange information in segregated, homogeneous cliques than in large crowds.

Echo chambers, though they may cut off potential communication with a great number

of people, make actual communication possible, and are hence useful for society.

The activity of sorting into groups and communicating within them is highly complex

and does not easily lend itself to strategic analysis. Every speaker chooses his message

based on how he thinks different messages will be perceived – which, in turn, depends on

how the listeners expect a speaker to choose his message and on what other knowledge

the listeners have, which in turn may depend on who else is speaking to them and what

their messages are. And all these implications have to be considered when deciding which

group to interact with (which table to join, which room to enter). In sections 1 to 5, we

develop a highly tractable way to model strategic information transmission (i.e. cheap

talk) among many individuals, who all have different information, who all have the ability

to send and receive messages, and who all freely choose within which group of people they

1See, for example, studies on segregation in blogs (Lawrence et al., 2010), on Facebook (Del Vicario
et al., 2016; Quattrociocchi et al., 2016), on Twitter (Barberá et al., 2015) and in online and offline
contexts in general (Gentzkow and Shapiro, 2011).

2See, for example, articles on the role of echo chambers in the “Brexit” referendum (Chater, 2016) or
the rise of Donald Trump (Hooton, 2016).
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wish to communicate.

In section 6, we use empirical evidence from the micro-blogging service Twitter to

examine our predictions that the exchange of information becomes harder when people

have different political views, and that people interact more with others who hold similar

political views. In section 7, we discuss several applications of our model to the online

and offline world. Of course, we do not claim that segregation is always beneficial or

that echo chambers are necessarily a good way to organize society. Our results, however,

not only point to the benefits of echo chambers; they also throw doubt on some common

arguments against them. We discuss these in section 7.4.

Theoretical Results We analyze a general model in which a number of individuals face

aggregate uncertainty and have different preferences. These individuals sort into groups,

communicate within these groups, and finally make a choice. Every person wants to make

a choice that reflects his own knowledge and preferences, and would want everybody else

to take that choice as well. Consider the following example: A group of voters has to

decide on a level of taxation and redistribution. There are two sources of disagreement:

Knowledge and preferences. People disagree over how bad taxation is for economic growth,

i.e. they have different information about the state of the world. But they also have

different preferences: Even if they all agreed on the state of the world, rich people would

still prefer lower taxes than poor people. Everybody has a preferred level of taxation, and

would prefer everybody else to vote for that level of taxation as well – whereas others,

of course, may prefer a different level and would in turn want everyone to vote for their

preferred level.

We assume (for now) that people’s preferences are common knowledge, while their

information is private and cannot verifiably be communicated. Before voting for a level

of taxation, people can communicate their information about the harmfulness of taxes.

But differences in preferences interfere with the exchange of information: If a rich man

says that taxes are harmful, is that because he really thinks so, or because he is trying

to fool people into voting for lower taxes, which benefits him personally? It depends on

his audience: If speaking to a group of other rich people, he wants to give them accurate

information, given that they will then vote for a tax policy that is close to what he prefers.

If he speaks to a group of paupers instead (who are inclined to vote for what he views

as “too high” taxation), he will try to convince them that taxes aren’t hurtful, and the

paupers hence have no reason to pay any attention.

What if he speaks to a mixed audience, or one that includes members from even

more groups? What if those other people also speak simultaneously, possibly submitting

information to the speaker and the rest of the audience? We model such debate as a

multiple-sender, multiple-receiver cheap talk game in which each player has information

and simultaneously sends and receives messages. Crucially, we assume that every player’s
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information is independent from that of others. We consider this a realistic model of

debate: Every person knows some aspect of a problem, and a combination all knowledge

gives a faithful picture of the world. But when deciding which information to reveal,

players focus on the preference problem (”Do I want to reveal this information?”) and not

on problems of higher-order knowledge (”Does he already know what I am telling him?”).

This modeling technique allows us to derive an intuitive, geometric solution (theorem

1) to the n-person cheap talk game: Whether someone tells the truth in equilibrium

depends only on the distance between the speaker’s preference parameter and the average

preferences of his audience.3

With this understanding of communication within arbitrary groups, we can turn to

the question of how people rationally sort into groups, and when such equilibrium sorting

is optimal. We assume that before any communication takes place, people can enter

one of many “rooms”. Each message is heard by everyone within the same room but

cannot be heard outside the room. Entering or leaving a room can have many effects:

disciplining those whose preferences are close to one’s own (making them more willing to

tell the truth), destroying truth-telling between people which otherwise existed, providing

information to others in the room (if the entrant tells the truth), giving more information

to the entrant (if he comes from a room in which he learned less) – or any combination

of these. Since every player cares about his own information (to make a precise choice)

and that of others (because he cares about their choices, which they make based on their

information), the analysis may at first seem to be quite complex.

We show, however, that all of these considerations simplify to one: In choosing a room,

a player wants to maximize the weighted sum of pieces of information that is generated

by subsequent communication in all rooms (proposition 1). A “piece of information”, in

this context, is simply the fact that the information of one player is available to another

player. In our set-up, we can measure this information generation in bits, the basic unit of

information. The only differences in motivation between players arise because they each

value their own information more than that of others.

Our analysis focuses on two closely related questions: What is the welfare-maximizing

allocation of people into rooms, and which room allocations can emerge as equilibria from

individual behavior? The simplest way to think about these two problems is to consider a

polarized society that consists of two groups of players who differ in their preferences. In

section 4.4, we characterize the optimal room allocation and, when it is not an equilibrium,

the welfare-optimal equilibrium of the room-choice game.

More generally, we think of polarization as “clustering” of preferences around certain

values. We parameterize this notion of polarization while keeping the differences in in-

formation between players constant. This way, we can show that if the polarization of

3In the supplementary material, we show that our main arguments are robust to using different
assumptions and modeling techniques.
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preferences is large compared to the differences in information, full segregation by prefer-

ences is always welfare-optimal and an equilibrium, whereas integration is optimal and an

equilibrium for low polarization (theorem 2). We provide a lower bound for how polarized

a society would need to be before segregation becomes both optimal and an equilibrium

phenomenon, by showing that if preferences are evenly distributed, segregation is neither

optimal nor an equilibrium (section 4.3).

In our example of choosing a tax policy, this may mean that society optimally splits

into two political parties: One bringing together the rich, the other the poor. Within

each party, members can truthfully discuss their thoughts and knowledge on how the

world works – while a meaningful discussion involving members of both parties would be

impossible. Depending on how preferences are distributed, other outcomes are possible.

Fully integrated debate may be feasible and optimal if there is no polarization in pref-

erences. If there is stronger polarization, society could fragment into even more parties.

(Of course, the assumption that preferences are simply a reflection of wealth is highly

stylized. The argument would equally apply to any other polarization in preferences, as

long as people were to disagree about what was the right thing to do even if they could

agree on the particular fact they are currently discussing.)

Overall, our results suggest that segregation into homogeneous “echo chambers” is a

rational and often Pareto-optimal response to polarized preferences. Segregation is caused

by polarization, not the other way around. However, these results do not mean that

polarization is in any way good for society – in fact, we can show that polarization lowers

welfare (proposition 3). Segregation, as a rational response to polarization, mitigates the

corrosive effects of polarization, and can hence be seen as an indicator of polarization as

well as a countermeasure of society against it.

In section 5, we consider what happens if preferences as well as information are private.

This hinders communication even more, since players are more skeptical and scrutinize

each message both for information about the state and the sender’s motivation. This

leads to even more segregation in equilibrium and welfare optimum. Indeed, we find that

if we start with any situation in which full integration is optimal and an equilibrium, and

increase uncertainty in preferences (while keeping expected preferences constant), we can

reach a situation in which full segregation by preference types is the only equilibrium and

also welfare-optimal. We suggest that this is relevant for thinking about interactions and

debates on the Internet, where the precise type of one’s conversational partner as well as

audience is often unclear. Under such uncertainty, there is a stronger need for segregation

than there may be with off-line interactions, and hence further reduced welfare.

Empirical Evidence In the last part of our paper, we provide evidence for some of

the results and predictions of our theoretical considerations. Since we understand our

results to be at a high level of abstraction, we do not think that all of them can directly
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be translated into measurable behavior, or that one could even try to estimate model

parameters. Instead, we consider several behavioral patterns that would be consistent

with the mechanisms of our model, and show that these patterns are present in observed

behavior on a large social media platform.

On the online messaging and networking platform Twitter, users can send different

kinds of messages (“tweets”) which are seen by different kinds of audiences. We develop a

novel way to estimate the ideological stance of Twitter users based in the United States,

by measuring how similar their tweets are to current members of the U.S. Congress. With

this tool, we can examine how the nature of interactions on Twitter changes with the

ideological distance between participants – where we interpret a user’s ideological stance

as his “bias”.

The main mechanism in our model is that when people have very different prefer-

ences, they find it hard to exchange credible information via cheap talk. In the model,

this shows itself in the fact that only babbling is possible. It is not clear, however, what

such babbling would mean in practice: The same message can be meaningful and infor-

mative or completely meaningless, depending on the sender’s intention and the receiver’s

expectation. But while it may seem futile to try to observe babbling directly, we believe

that the consequences of babbling are more easily spotted.

How should we expect people to behave if cheap talk is indeed impossible because

of a large ideological distance? We see three possible consequences: (i) Not to send

a message at all, since there is little to be gained. (ii) Sending a short, emotional (and

potentially abusive) message to satisfy an emotional need, not to transmit any information.

(iii) Trying to persuade anyway – not by cheap talk, but by arguments and verifiable

information.

In section 6, we present evidence that is consistent with all three effects. Twitter users

engage more with people who have similar ideology than with people who are different.

The larger the ideological distance between two twitter users, the more emotional and

negative interactions are – an effect that is much stronger for short tweets than for longer

ones. And overall, as the ideological distance between twitter users grows, we see more

long and complex tweets that make use of hyperlinks to outside sources.

Relation to other research Our work closely relates to four different methodological

approaches, and ties into a wider-ranging literature on segregation, isolation and echo

chambers.

In methodological terms, we develop a highly tractable model of many-to-many cheap-

talk. Our simple geometrical solution avoids much of the exponential complexity that

usually appears in models with multiple senders or receivers. As such, our model can

reproduce and simplify some insights from other multi-sender or multi-receiver models.

For example, similarly to the classical analysis by Farrell and Gibbons (1989), the presence
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of other receivers may either discipline the sender or subvert truth-telling. In contrast

to most other papers, we allow for an arbitrary number of agents who are both receivers

and senders and add a first stage in which agents decide whom to communicate with.4

In our main analysis, we restrict ourselves to binary signals and messages, but show in

the supplementary material that our main results are robust to the introduction of an

arbitrary finite number of states and signals.

While the rooms of our analysis are a novel modeling device, they can in principle

be thought of as fully connected, disjoint networks. A related paper by Galeotti et al.

(2013) analyses communication in networks by agents who face a decision problem similar

to ours, but in their setup the most informative (or welfare optimal) equilibrium can be

in mixed strategies. Such mixed equilibria are a common occurrence in similar models

but are generally intractable. In our model, however, the most informative equilibrium

is always in pure strategies. There is, of course, a much larger literature on endogenous

network formation. The principal differences to our paper are that we consider cheap

talk, do not focus on directed networks, and construct a tractable model of room choice,

which allows us to study (efficient) segregation.

The welfare analysis of room choice in our model can also be seen as an information

design problem: How can an information designer induce information exchange between

several agents, if these agents have an incentive to manipulate others through lies, and

if commitment to a disclosure rule (as in the literature on Bayesian Persuasion) is not

available? The right construction of mixed groups can induce truth-telling. Rooms en-

dogenously create costs to lying (the main instrument of discipline in Kartik 2009), and

they induce truth-telling despite the fact that different senders’ information is orthogonal

to each other and there hence exists no mechanism (as in e.g. Krishna and Morgan 2001)

to elicit information by playing senders off against each other.

We also show that uncertainty about preferences has a corrosive effect on truth-telling.

This is similar to Morgan and Stocken (2003), who consider financial analysts who are

biased in a known direction, but whose precise bias is unknown. Such uncertainty “in

one direction” leads to losses in informativeness in one direction (i.e. one of two messages

becomes more common but less informative). Our analysis extends to general distributions

of players’ biases and hence considers uncertainty about the size and the sign of the

sender’s bias, which may be continuously or discretely distributed. What turns out to

matter is the concentration of probability mass around certain values, and hence we can

show that uncertainty about size and direction of a bias does not necessarily help with

information transmission (as it does in Li and Madarász, 2008). Our results and methods

generalize without loss to large groups of players and general distributions of biases. Of

4While our novel setup allows us to vastly simplify the analysis of many-to-many cheap talk, our main
arguments are not dependent on this particular setup and can be derived in a more classical cheap-talk
setting akin to Crawford and Sobel (1982), as we show in the supplementary material.
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course, we are mostly interested in these results as a preliminary for room choice, as

rooms are optimally and in equilibrium more segregated for higher uncertainty. To our

knowledge, we are the first to generally analyze how uncertainty about bias influences

whom people want to associate and communicate with, and how it increases the appeal

and the usefulness of segregation.

Finally, in our empirical work, we develop a novel way to score Twitter users on a

partisan left-to-right scale, based only on their tweets. The method is similar to how

Gentzkow and Shapiro (2010) score newspaper editorials; we demonstrate that such a

method is valid for scoring arbitrary Twitter users. The main differences from this earlier

work are in the size of our partisan dictionary (which is about 18 times the size of Gentzkow

and Shapiro’s dictionary) and the causal agnosticism with which it is compiled: While

earlier works have focused on phrases with clear ideological content, our dictionary also

contains non-obvious (but informative) entries such as hashtags, names and locations.

The debate about echo chambers has recently been given urgency by several studies

and popular treatises on how the internet changes the way societies debate. Sunstein

(2001, 2017) prominently makes the case that the internet has been increasing ideological

segregation and that this endangers democracy. Gentzkow and Shapiro (2011) point

out, however, that the segregation of “offline” interactions is larger than that of “online”

interactions. But while such offline segregation can happen simply because we live close

to people who are like us in many socio-economic aspects, segregation on the internet is

driven more by choice. Lawrence et al. (2010), for example, show that blog readers tend

to read blogs that agree with their own ideological bias. Our model allows us to analyze

the informational effects of any kind of segregation or integration, as well as predicting

which communication structures arise from individual optimizing behavior, and whether

they are socially optimal. Most importantly, we argue that those who see in segregation

the ruin of societies are focusing on a symptom, not the cause. Polarization of preferences

and mutual mistrust are the real culprits; informational segregation is a rational behavior

that mitigates the harm they do.

1. Model

There is an unknown state of the world θ =
∑n

k=n θk. Each θi is independently drawn

to be 0 or 1 with equal probabilities, so that θ is binomially distributed on {0, 1, . . . , n}.
n individuals each make an observation about the state. In particular, individual i re-

ceives a private signal σi ∈
{
σl, σh

}
of accuracy p about θi, i.e. Pr

(
σi = σh|θi = 1

)
=

Pr
(
σi = σl|θi = 0

)
= p > 1/2. Before observing his signal, a player can access one of n

“rooms”. There are no costs to entering a room, and rooms have no capacity constraints

– but each player can only be in exactly one room. After observing his signal, a player

sends a cheap-talk message mi ∈ {ml,mh} that is received by all players in the same
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room. Finally, each player takes an action ai.

The payoff of player i is

ui(a, bi, θ) = −(ai − bi − θ)2 − α
∑
j 6=i

(aj − bi − θ)2

= −

(
ai − bi −

n∑
k=1

θk

)2

− α
∑
j 6=i

(
aj − bi −

n∑
k=1

θk

)2

(1)

where a denotes the vector of actions of all players and bi ∈ R is a commonly known

“bias” of player i. That is, actions of all players affect i’s payoff, and i would like that all

players choose the action bi+θ. We can hence think of bi as the preferences of the players,

whereas thetai is the information of player i. Note that only the relative positions of biases

matters (i.e. the distances between biases), not their absolute magnitude. The parameter

α measures the relative weight players assign to other players’ behavior. Players maximize

their expected payoff.

The timing of the game is:

1. Players simultaneously decide which room to enter.

2. Players privately observe their signals σi, and room choices become common knowl-

edge. Players simultaneously send messages mi that are observable by everyone in

the same room Ri.

3. Players simultaneously take actions ai; payoffs are realized.

We analyze the model by backwards induction: First we characterize optimal choice of

action given messages, then the optimal choice of message given a room allocation, and

then we analyze the game in which players choose which room to enter. The solution

concept used throughout is Perfect Bayesian Equilibrium.5

2. Equilibrium Behavior Within a Room

2.1. Choice of Action

We can immediately see that only the first part of expression 1 matters for determining

i’s optimal action a∗i . The first-order condition yields

a∗i = bi + E[θ] = bi +
n∑
j=1

E[θj], (2)

i.e. the optimal action is simply i’s bias plus his expectation of the state, conditional on

his own signal and on the messages he has received.

5All messages occur in equilibrium and there is no hidden information at the time that people choose
rooms, so that our results are insensitive to assumptions about off-path beliefs.
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In the following, we will denote by µij = Ei[θj] i’s belief about θj, so that expression

(2) becomes a∗i = bi +
∑n

j=1 µij.

2.2. Choice of Message

Now that we have established each agent’s optimal action choice given beliefs, we can

consider the optimal choice of message. For this, we focus on a single room, and consider

the equilibria of the cheap talk game in this room. This means that when we speak of

“equilibrium” in this section, we mean the equilibrium in a specific room (with a given

set of members with given biases), and not the overall equilibrium of the game. We

can do this because once players have sorted into rooms, the messages in other rooms

are unobservable and the actions of players in other rooms are irrelevant to a player’s

optimization problem. Hence, an equilibrium of the subgame after room choice can be

disassembled into one equilibrium of the cheap talk game for each room.

Definition 1. We call a messaging strategy mi ...

• babbling if mi is independent of i’s observed signal σi and therefore nobody learns

anything from mi.

• truthful if mi(σ
l) = ml and mi(σ

h) = mh.

• lying if mi(σ
h) = ml or mi(σ

l) = mh.

• pure if mi is either babbling or truthful.

• mixed if for some signal σk, k ∈ {l, h}, both messages are sent in equilibrium and

the strategy is not babbling.

The cheap talk game within a room can – as usual – have several equilibria. For

each player i, there always exists an equilibrium in which i babbles. (Consequently, there

also always exists an equilibrium in which all players babble.) In line with the cheap

talk literature, we will focus on the most informative equilibrium.6 The following lemma

implies that the most informative equilibrium is in pure strategies.

Lemma 1. Let (m1, . . . ,mn) be equilibrium strategies. If mi is a mixed strategy, then

there also exists an equilibrium with strategies (mt
i,m−i), where mt

i is the truthful strategy.

(Proof on page 36.)

What is the intuition for this result? Imagine an equilibrium in which player i mixes

between messages after observing signal σh. That is, i is indifferent between sending a

high message that induces high actions by the other players in his room and a low message

6The concept of “most informative” equilibrium is not necessarily well defined in multi-sender cheap
talk games. However, the following paragraphs will make clear that this concept is straightforward in our
model.
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that induces lower actions by the players in his room. This means that the low actions

induced by ml are somewhat too low from i’s point of view and the high actions induced

by mh are somewhat too high from i’s point of view. Note that i will always send the low

message in case he observes a low signal in such an equilibrium because the actions i would

like the other players to take are increasing in his signal. Consequently, a high message

perfectly reveals i’s high signal. Now consider switching to an equilibrium in which i

uses the truthful strategy. When i now observes a high signal, sending the high message

will lead to exactly the same actions by the other players as in the original equilibrium.

However, sending a low message will lead to a lower belief than in the original equilibrium

and therefore to lower actions by the other players. Player i will then strictly prefer the

high message as these lower actions are too low (given that i was indifferent in the original

equilibrium).

The main implication of lemma 1 is that the most informative equilibrium is always

in pure strategies: Starting from any mixed equilibrium we can switch the mixing players

one by one to truthful – and therefore more informative – strategies and the resulting

strategy profile remains an equilibrium.

Corollary 1. The most informative equilibrium in a room is always in pure strategies.

We can now characterize the most informative equilibrium. Intuitively, we might

expect that the distance of bi to the biases of the other players is crucial for i’s incentive to

tell the truth, since i becomes more interested in misleading the other players if their biases

differ by a lot. We formalize this intuition and specify the most informative equilibrium

in the following result, which is illustrated by figure 1:

Theorem 1. Let b =
∑

k∈R bk
nR

be the mean bias of players in room R. In the most infor-

mative equilibrium in this room, a player i tells the truth if and only if

bi ∈
[
b− nR − 1

nR
(p− 1

2
), b+

nR − 1

nR
(p− 1

2
)

]
and babbles otherwise. (Proof on page 37.)

The size of the truth-telling interval increases in both nR, the number of people in

the room, and p, the precision of individual signals. The increase in nR can be seen as a

correction term: What really matters for the motivation of a player is his distance from

the average bias of the other players in the room. Hence, if we write a symmetric interval

around b (which includes bi), we have to add this correction.7 When p, the precision of

signals, is higher, each truthful signal causes a greater change in the actions of others.

People communicate truthfully if they are disciplined by the danger of influencing others’

7Intuitively, one could also think that the average room bias “stabilizes” for larger nR, so that a player
can be further away from the average room bias and have the same distance from the average bias of
other players in the room.

11



actions too much by lying. Hence, if p is higher, this disciplining force is stronger and a

player can be further away from the average bias of others and still tell the truth.

bi

b1 b2 b3 b4 b5

b−nR−1
nR

(p− 1
2 ) +nR−1

nR
(p− 1

2 )

Figure 1: Finding the most informative equilibrium in a room consisting of players 1 to 5.
We find the average bias and construct a symmetric interval around it. Players 1 and 5
babble in the most informative equilibrium, since their biases are too far from b. Players
2, 3 and 4 tell the truth.

3. Room Choice

We can now analyze room choice, under the assumption that the most informative equi-

librium will be played in any room (i.e. in each subgame). We will first derive some results

about the welfare-optimal room allocation, and then analyze under which conditions this

optimal room allocation is in fact an equilibrium.

3.1. Welfare-Optimal Room Allocation

Given the expression for individual payoff (1), overall welfare in the model is given by

W (a, b, θ) =
n∑
i=1

ui(a, bi, θ) = −
n∑
i=1

(
ai − bi −

n∑
k=1

θk

)2

− α
n∑
i=1

∑
j 6=i

(
aj − bi −

n∑
k=1

θk

)2

.

This expression, of course, is not yet very helpful in trying to compare different room allo-

cations. However, we can show that in our model, welfare can simply be expressed in terms

of the aggregate amount of information that is held by all players after communication

has taken place.

Consider the information that is available to a single player. A player always receives

his own signal σi. We can call this one piece of information. Assume that i also re-

ceives truthful signals from two other players; then we can say that i has three pieces of

information about θ. Let ζi ∈ {1, 2, . . . , n} be the number of pieces of information avail-

able to player i which are either his own signal or truthful messages from other players.

Given that each σj has two possible values (high or low), ζi in fact measures player i’s

information in bits, the unit of information. The following result shows that all welfare

comparisons reduce to informational accounting in bits:

Proposition 1. Welfare depends only on
∑

i ζi and model parameters and is linearly

increasing in
∑

i ζi. (Proof on page 38.)
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Because payoffs are quadratic, we can additively separate a player’s payoff into (i)

losses through preference differences and (ii) losses from variance due to lack of informa-

tion. In an equilibrium of the messaging game, the former losses are unavoidable, but

the latter can be mitigated by increasing the flow of information between players. We

can measure this flow of information simply by counting the pieces of information that

each player has when making their decision. Since every player i has exclusive knowledge

about θi, there are no decreasing marginal returns to information, and the sum of all ζi

is indeed a sufficient statistic for welfare.

This result means that we can quickly compare any two room allocations. Consider, for

example, the room allocation in figure 1. Having everybody in the same room generates 17

pieces of information: 3 players have 3 pieces of information each, while two players (those

who babble) have 4 pieces each. Would it be possible to improve on this allocation? We

can immediately see that this cannot be achieved by splitting players up into two rooms

with 3 and 2 players, respectively: Even if everybody in these rooms was telling the truth,

only 32 + 22 = 13 pieces of information would be produced. The same is true for splitting

them into a higher number of even smaller rooms. But even if we somehow could get 4

people in one room to tell the truth by putting one of the players into a separate room,

the total number of pieces of information would be 42 + 1 = 17 – the same as with full

integration. Hence the room allocation shown in the figure is welfare-optimal.

Of course, we may often not be able to make such quick deductions in general cases

and might have to consider many possible room allocations before concluding what the

optimal one is. This problem gets more complex as n grows, since the number of possible

partitions of a set (given by the Bell sequence) grows quite rapidly in the size of the set.

We will derive general results on optimal allocations in section 4 below.

3.2. When is the Welfare-Optimal Allocation an Equilibrium?

Finding out which room allocation is welfare-optimal is, of course, only half the story.

Since people are allowed to freely choose which room they want to be in, we now need to

consider which room allocations can arise in equilibrium.

We begin by rewriting player i’s payoff analogously to our result on welfare (proposition

1; the derivation is in the proof of that proposition):

Ui = (1/4− p(1− p))

[
ζi + α

∑
j 6=i

ζj − α
∑
j 6=i

{(bj − bi)2} − 1/4 [n+ α(n− 1)n]

]
.

This redefines i’s choice of room in purely informational terms: When choosing a

room, i wishes to maximize a weighted sum of his own information (after communication)

and that of other players. When he considers switching from, say, room RA to RB, i will

consider how much more he can learn in room RB, as well as how much more or less the

other people in both rooms will learn after his switch. How exactly i is willing to trade

13



off these informational effects against each other depends on α. For α = 1, each agent

simply maximizes welfare, and we can hence derive the following result:

Proposition 2. For any configuration of biases, there exist α and α such that α ≤ 1 ≤ α

and a welfare-optimal room allocation is also an equilibrium of the room choice game if

α ∈ [α, α]. (Proof on page 40.)

Depending on the deviations that are possible in the welfare-optimal allocation, α and

α will often be strictly below and above 1. We can intuitively analyze the situation by

considering figure 2, which shows all possible deviations for all players in the welfare-

optimal room allocation of an exemplified game. Deviations in the shaded area cannot

exist if players are allocated to rooms in a welfare-optimal way. The condition ∆ζi +

α∆
∑

j 6=i ζj ≤ 0 translates to ∆
∑

j 6=i ζj ≤ −
1
α

∆ζi: Any line through the origin that has

no points (i.e. deviations) above it corresponds to an α for which the welfare-optimum is

also an equilibrium. In the given example, this is true for all α ∈ [0.75, 1].

∆ζi

∆
∑

j ζj

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

(Ruled out by assumption)

α = 0.75

Figure 2: Possible deviations for all players in the welfare optimal room allocation.
Deviations in the shaded area cannot exist in the welfare optimum. Any α for which
∆
∑

j 6=i ζj ≤ −
1
α

∆ζi means that the welfare-optimal allocation is also an equilibrium of
the room choice game.
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4. Polarization and Segregation

We have now shown that the messaging problem inside each room has a simple geometrical

interpretation, and that the room choice game reduces to a problem in which all players

wish to reduce a weighted sum of their own uncertainty and that of the other players.

Using these results, we can analyze how the composition of the set of biases influences

which room allocations are optimal, and which allocations can be achieved in equilibrium.

Despite the complexity of the model and the discrete nature of optimal communication

and room choice, the tools and simplifications we have derived in the preceding sections

allow us to gain general insights. The main insight is that segregation is welfare-optimal

and an equilibrium if players are sufficiently polarized. By polarization, we mean that

biases are clustered in two or more groups, instead of being clustered in one group or

evenly spread out.

We approach polarization in three ways. First, we will consider arbitrary bias con-

figurations and either increase or decrease the polarization of preferences compared to

the differences in information between players. We show that total segregation is the

welfare-optimal room allocation and an equilibrium if the polarization of preferences is

large compared to the differences in information between players. On the opposite end of

the spectrum, full integration is welfare-optimal and the unique equilibrium of the room

choice game if the differences in information are large compared to the polarization of

preferences.

Second, we establish a lower bound for how polarized biases need to be for segregation

to be optimal. We show that if biases are evenly spread on some interval of the real

line, then full integration (or a very similar room allocation) is the welfare-optimal room

allocation and an equilibrium.

Third, we narrow our analysis to the case in which there are only two bias types,

and fully characterize the set of all optimal allocations for different distances between the

two biases as well as different proportions between the two groups, and whether these

allocations are equilibria. In this case, we can generally show that if the welfare-optimal

room allocation is not an equilibrium, then the welfare-optimal equilibrium allocation will

have too little segregation compared to the welfare-optimum.

We will begin with a simple graphical example of how segregation can be a welfare-

optimal equilibrium if players are polarized, and then introduce our general results.

4.1. A Simple Example

Consider a set of biases as in panel (i) of figure 3: A group of 6 players, 3 of whom

have relatively small biases, while the other 3 have relatively large biases. If all players

are within the same room (panel i), the truth-telling interval within this fully integrated

room does not cover any of the players’ biases, which means that in the most informative

15



equilibrium none of them reveals any information. The number of pieces of information

generated is hence 6.

Suppose the players segregate by bias type into two separate rooms – see panel (ii).

The truth-telling interval in both rooms covers all the players in the respective rooms,

which means that all players reveal their information truthfully. In each room, 9 pieces

of information are generated, which means that overall this allocation generates 18 pieces

of information.

Is this segregation an equilibrium? We can consider the most profitable deviation of

player 3 (which is symmetric to the most profitable deviation of player 4 and better than

the best deviations of any other players) – see panel (iii). If player 3 moves into the other

room, he will move the average in this room so that players 5 and 6 no longer tell the

truth in any equilibrium. He himself also does not tell the truth anymore, so that his move

completely deprives society of the information of players 3, 5 and 6. (The lengthening of

the truth-telling interval that results from 3’s move is not enough to compensate for the

change in average bias.) The resulting room allocation generates 22 + 4 + 3 = 11 pieces of

information, which clearly leads to lower welfare. But it is also inferior for player 3, since

he now has 2 pieces of information (his own and the message from player 4) instead of 3,

so that his payoff definitely decreases. Hence this deviation is not optimal for player 3,

and no player has a profitable deviation from two segregated rooms – which means that

this allocation is not only welfare-optimal, but also an equilibrium.

(i)

bi

1 2 3 4 5 6

b̄

Room

(ii)

bi

1 2 3 4 5 6

b̄A b̄B

Room A Room B

(iii)

bi

1 2 3 4 5 6

b̄A b̄B

Room A Room B

Figure 3: Truth-telling intervals for (i) the fully integrated room, (ii) two segregated
rooms, (iii) player 3’s best deviation from the segregated room.
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η

0

Full integration
optimal and
equilibrium

Full segregation
optimal and
equilibrium

Figure 4: Welfare-optimal allocations that are also equilibria for large and small η.

4.2. When is Segregation optimal?

Consider any bias configuration B, where an arbitrary number of players share each bias

type. Let Bη be the bias configuration that contains ηbi for each bi in B. Then the

following is true:

Theorem 2. (i) If η is sufficiently close to 0, full integration is welfare-optimal and a

room-choice equilibrium.

(ii) If η is sufficiently large, full segregation by bias types is generically welfare-optimal

and a room-choice equilibrium. (Proof on page 40.)

Figure 4 summarizes the result. We can intuitively explain it in the following way:

If biases are clustered very closely compared to how different the players’ information is,

having all players in one room would result in universal truth-telling. This cannot be

improved upon in welfare terms, and it is also an equilibrium since any player would lose

by leaving the fully integrated room.

On the opposite end of the spectrum, we consider the case where biases are clustered

very widely compared to differences in information, and we do not assume special, non-

generic properties such as that one bias is the exact average of two other biases. Then

truth-telling will be impossible in any room that contains two or more players with dif-

ferent biases. Hence there exists no room allocation that can improve welfare compared

to full segregation by bias types. Similarly, no player has an incentive to deviate from full

segregation, since such a deviation cannot provide more information to the player himself

or any other player.

4.3. A Lower Bound for Polarization

To find out how polarized biases need to be so that segregation is optimal and an equi-

librium, we can consider the stylized case of biases that are evenly distributed on an

interval of the real line. We can think of this case as having “zero polarization”, whereas

clustering of biases around certain values exhibits positive polarization.8 What is the

welfare-optimal allocation in this case? Given that biases could be evenly distributed

on a very large interval, we might expect that the optimal allocation involves separating

8If biases are tightly clustered around a central value, we could think of this as “negative polarization”
– we consider this case in the supplementary material.
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the players into several rooms. But in fact, the opposite is true: If biases are evenly

distributed, the welfare-optimal allocation often involves a single integrated room that is

also an equilibrium. In some special cases, an allocation that places one player outside

the room is welfare-optimal, and this allocation is an equilibrium if α is large enough. We

state this here as an informal result and refer the reader to the supplementary material

for a more formal statement and derivation.

Result 1. Let bi = (i − 1) ∗ k/(n − 1) for i = 1, . . . , n. Then the welfare optimal room

allocation assigns either all players to one single room or all but one extreme player to

the same room. Assigning all players to the same room is also an equilibrium.

Why is this? We can start by considering the fully integrated room, in which some

people whose biases are close to the overall average tell the truth, and the rest babble

and learn from the truth-tellers. Since biases are evenly distributed by assumption, there

is little welfare to be gained by moving the bias average around by allocating people to

another room. (This can only work because of integer effects – i.e. because changes in the

average bias have discrete effects on who tells the truth – which is precisely what gives

us the exceptions in the second half of the proposition.) Any room that includes only

part of the players will have a shorter truth-telling interval, which (again, absent integer

effects) means fewer truth-tellers. But if we cannot increase the number of truth-tellers by

segregating into smaller rooms, then the fully integrated room must be welfare-optimal

and also an equilibrium: Every player receives the highest possible number of truthful

messages while the number of players having their own signal in addition to this number

of messages is also maximal.

4.4. Bipolar Polarization

We now focus on the case where there are two bias groups, i.e. bi ∈ {0, b} for some

b > 0. This “bipolar polarization” is often used synonymously with the word polarization.

Our results allow us to generally solve this setting for all possible parameter values. We

will first heuristically derive solutions for the case where both groups have equal size and

then comment on the case with unequal sizes. Detailed derivations are presented in the

supplementary material.

If all players are in one room, the average bias will be b/2 and all players send truthful

messages if and only if b/(p− 1/2) ≤ 2(n− 1)/n, see theorem 1. Clearly, if this inequality

holds, such a fully integrated room will then be both welfare optimal and an equilibrium.

At the other extreme, consider the case where the presence of one player of bias b in a

room containing all players with bias 0 will lead to babbling by all players. The average

bias in such a room is b/(n/2+1) and by theorem 1 babbling even by the players with bias

0 is inevitable if and only if b/(p− 1/2) > n/2. In this case, any room containing players

of both bias types will lead to babbling. Segregating the two groups is consequently both

welfare optimal and an equilibrium.
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This illustrates that segregation is optimal and an equilibrium if polarization is high

(i.e. if b is large), and full integration is optimal and an equilibrium if polarization is

low (if b is sufficiently low). For intermediate levels of polarization, the welfare optimal

room allocation need not be an equilibrium. More precisely, the two groups may not

be segregated enough in any equilibrium. Intuitively, if segregation is welfare optimal,

players might have an incentive to switch to the room where the players with the opposite

bias are because this allows them to receive more messages. They neglect the negative

externality of this deviation, namely the loss of their own truthful message for players of

their own bias. These results are depicted in figure 4.4.

n−1
n/2

n/2

full integration

welfare optimal

and equilibrium

too little
segregation

in equilibrium

full segregation

welfare optimal

and equilibrium
2

n−2

b
p−1/2

α

Figure 5: Welfare and equilibria for equally sized bias groups.

When the welfare-optimal room allocation is not an equilibrium, the welfare-maximizing

equilibrium is straightforward: All players of one type, say bias 0, are in one room and are

joined by m players of bias b. The players with bias 0 tell the truth, while the m players

with bias b babble. All other bias b players are in a separate room, where they tell the

truth. The number of babbling players, m, is such that one additional bias b player in

the mixed room would lead to babbling of the players with bias 0.9 Hence m decreases in

b, until it falls to zero and full segregation is welfare-optimal and an equilibrium. From a

welfare perspective, there is too little segregation in any equilibrium with a positive num-

ber m of players who babble, and the resulting babbling constitutes a socially undesirable

information loss.

When the two bias groups are not of equal size, say n0 > nb for concreteness, results

are similar to above but there is now the possibility that two not fully segregated rooms

are welfare optimal. To see this, consider b/(p− 1/2) just high enough such that players

of bias b (the minority) would no longer be truth-telling in a fully integrated room. It

can then be optimal to put one (or a few) players with bias 0 in a separate room if this

restores truth-telling incentives for players with bias b. Note that this may not be an

equilibrium if α is small: The bias 0 players that are isolated might find it beneficial to

9That is, m is the integer such that bm/(n/2 + m) − (p − 1/2)(n/2 + m − 1)/(n/2 + m) ≤ 0 <
b(m+ 1)/(n/2 +m+ 1)− (p− 1/2)(n/2 +m)/(n/2 +m+ 1) by theorem 1.
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deviate to the big room as they can get more information there. The optimal equilibrium

is in this case the fully integrated room (in which bias b players babble). Hence, we obtain

too little segregation in equilibrium. For slightly higher b/(p − 1/2) the just described

room allocation may no longer be feasible as truth-telling is no longer a best response in

a room with nb players of each bias. It then becomes optimal to have one room for all

players in which the majority is truthtelling while the minority listens to the majority

and babbles itself. Clearly, this is also an equilibrium. Figure 6 schematically illustrates

welfare optimal and equilibrium room allocation. We refer the reader to the supplementary

material for a full analysis.10

1.6 21.75 5

2/3

1/6

full integration

welfare optimal

and equilibrium

(truthtelling) too little
segregation

in equilibrium

two rooms

(one mixed)

welfare optimal

and equilibrium

full integration

(bi = 0 babble)

welfare optimal

and equilibrium
too little

segregation

in equilibrium

full segregation
welfare optimal
and equilibrium

b
p−1/2

α

Figure 6: Welfare and equilibria when n0 = 5 > 4 = nb. (not to scale)

4.5. Polarization Destroys Welfare

We have argued that segregation is a rational and Pareto-optimal response to polarization.

This does not mean that polarization in itself increases welfare – quite the opposite. If we

return to the η-parametrization under which we derived our general results on integration

and segregation in section 4.2, we can show that welfare is weakly decreasing in η, i.e. our

measure of polarization.

Proposition 3. Denote expected welfare in the welfare optimal room assignment with bias

configuration Bη by W (η). W (η) is decreasing in η. (Proof on page 41.)

To illustrate this result, consider the following thought experiment: Starting with any

bias configuration and any room allocation, we increase η. This will weakly decrease

communication in any room, which harms welfare. Allowing for further segregation may

restore some communication, which reduces the harm – but not completely.

We should hence be very precise about the mechanism by which higher polarization de-

creases welfare. It is not through segregation, even though higher polarization causes more

10There is one further scenario that does not show up in the example with nb = 4 and n0 = 5: For
b/(p − 1/2) slightly above (n − 1)/nb, it can be welfare optimal to isolate one (or a few) players with
the minority bias while keeping all other players in one room. This allows the majority in this room to
be truth-telling while babbling would ensue in a fully integrated room. This scenario occurs when group
sizes differ a lot.
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segregation, which ultimately causes less information to be exchanged. Saying “segrega-

tion lowers welfare” would ignore the crucial intermediate step, which is that polarization

in itself causes an informational breakdown. In fact, segregation mitigates this breakdown,

without of course being able to restore communication between people that are now in

separate rooms.

One could think of echo chambers as society’s (decentralized) defense mechanism

against polarization. Like fever in a human body, segregation occurs as the effect of an

underlying problem, and its presence hence indicates that polarization is at problematic

levels. Echo chambers, and segregation more generally, are hence a symptom of polariza-

tion. And just like artificially lowering fever, treating the symptom without addressing

the cause can in fact exacerbate the situation. Reducing polarization will weakly improve

welfare; reducing segregation may not.

5. Uncertainty

So far, we have assumed that all biases bi are common knowledge. In real-life situations,

the type of a sender is often not known, so that the receiver is drawing inferences about the

state of the world and the type of the sender at the same time. This can make informative

communication much harder. In this section, we consider the effect of uncertainty about

biases on the existence of within-room equilibria, and on the room choice game.

Let all biases bi be randomly and independently distributed on R according to dis-

tribution Fi. Each player observes his own bias bi, but only knows the distributions of

the biases of other players. Let bei =
∫∞
−∞ bi dFi be the expected value of bi. This can

be thought of as a generalization of the previous sections, in which all biases were al-

ways identical to their expected value. When we talk about “introducing” or “adding”

uncertainty in this section, we think of starting with the model in which all biases are

known with certainty, and replacing each bias with a bias distribution that has the same

expected value. Throughout this section, we will be comparing across distributions that

have the same expected value. The following paragraphs intuitively analyze the model

with uncertainty; the corresponding formal statements and analysis are in part B of the

appendix.

To find the messaging equilibria within a room, we need to consider i’s problem of

choosing a messagemi after observing bi and σi, but only knowing Fj for all j ∈ Ri. We can

show that this problem is very similar to knowing all biases with certainty. In particular,

recall that i’s willingness to tell the truth depended only on the distance between bi and

the average of all other bj’s in the model with certainty. This insight applies analogously

to a model in which all biases are unknown: Now i cares only about the difference between

bi and the average of all bej , i.e. the expected values of other people’s bias.

A difference in describing equilibria with uncertainty arises since i may want to tell
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the truth for some values of bi and not for others, and the other players are unsure about

bi when interpreting mi. Their belief about how likely i is to tell the truth hence depends

on how bi is distributed. For each possible probability with which i tells the truth, there

exists an interval around
∑

j∈Ri,j 6=i b
e
j

nRi
−1 such that i wants to tell the truth if the realized bi

lies within this interval. Since the distribution of bi is common knowledge, that gives us

the following equilibrium condition: The beliefs of all other players about i’s probability

of truth-telling need to give rise to a truth-telling interval for i around the average of all

bj such that i wants to tell the truth with exactly the probability with which the other

players believe that he tells the truth.

This translates into a slightly generalized version of theorem 1 which, for any dis-

tribution of bi, gives us the highest probability with which i can tell the truth in any

equilibrium. Intuitively, the more concentrated Fi is around
∑

j∈Ri,j 6=i b
e
j

nRi
−1 , the higher the

probability with which i can tell the truth in equilibrium. Interestingly, only the proba-

bility mass of Fi that is sufficiently close to
∑

j∈Ri,j 6=i b
e
j

nRi
−1 matters; whether or not bei itself is

close to the average or not is not directly relevant for whether i is able to tell the truth

in equilibrium.

In particular, this means that we can choose any set of expected biases, regardless of

how close they are to each other, and construct bias distributions such that none of the

players ever wants to tell the truth to anyone in any room allocation. This means that for

any bias configuration, uncertainty has the potential to completely destroy all chances of

creating a room in which information is exchanged.

Proposition 4. Take a set of n players with biases {b1, b2, . . . , bn} such that there exists

a room allocation in which some (or all) players tell the truth. Then there exists a set

of probability distributions {F1, F2, . . . , Fn} of biases with expected values {b1, b2, . . . , bn}
such that in any room allocation of the n players, no player will tell the truth in any

equilibrium. (Proof on page 44.)

This is, of course, a very stark result. Uncertainty need not always destroy communi-

cation. It can, in fact, make communication possible where it was previously impossible,

by moving probability mass of bi’s distribution closer to the average of other biases. This

effect, however, is more limited and can never lead to full truth-telling if there is no full

truth-telling in a model with certain biases and identical expected values.

Proposition 5. If bi is such that there exists no equilibrium in room Ri where i tells the

truth, there exists a distribution Fi with expected value bei = bi such that there exists an

equilibrium in Ri where i tells the truth with positive probability. However, there exists no

Fi such that i tells the truth with probability 1 in any equilibrium. (Proof on page 45.)

While uncertainty can make some truth-telling possible where it was not possible with

certainty, large amounts of uncertainty will always destroy any truth-telling and make
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all messages arbitrarily uninformative unless they preserve sufficient probability mass in

the neighborhood of
∑

j∈Ri,j 6=i b
e
j

nRi
−1 . Because of the large space of possible distributions and

possible orderings on uncertainty, we show this result in two ways. First, we consider any

continuous bias distribution and show that by “stretching” it, any equilibrium will become

arbitrarily uninformative. Then we consider discrete bias distributions with bounded

support, and show that any way of increasing the variance of such a distribution will

likewise eventually erode all informative equilibria. In the following propositions, µlji is

j’s belief about θi, given that i has sent the signal ml; the other expressions involving µ

are defined analogously.

Proposition 6. Let F be a continuous distribution function that is continuous at its

expected value bei and symmetric around bei . Let F κ(x) = F (bei + κ(x − bei )), i.e. bi = bei

almost surely for limκ→∞ F
κ. For any F and ε > 0, there exists a κ̄ > 0 such that

µhji − µlji < ε if Fi = F κ and κ ≤ κ̄. (Proof on page 45.)

Proposition 7. Fix the expected bias bei of all players in a given room and a bounded

support for all bias distributions Fi. Assume that there is at least one element in the

support that is smaller than
∑

j∈Ri,j 6=i b
e
j

nRi
−1 − (2p− 1) and at least one element that is larger

than
∑

j∈Ri,j 6=i b
e
j

nRi
−1 + (2p− 1). Then for each ε > 0 there exists some σFi

such that for all

such Fi with Var (bi) ≥ σFi
2, µhji − µlji ≤ ε. (Proof on page 45.)

bib1 be2 b3 b4 be5b

Interval

Figure 7: An illustration of propositions 5 to 7. (The biases are identical to the one in
figure 1 except that b2 and b5 are now uncertain.)

Figure 7 illustrates propositions 5 to 7. The bias configuration is identical to the one

in figure 1 on page 12, except that there is some mean-preserving uncertainty about the

biases of players 2 and 5, whose biases are now distributed according to a bell-shaped

distribution function. Under certainty, player 2 was telling the truth, but is now only

telling the truth if his realized b2 falls within the interval (proposition 6). Player 5 was

babbling, but will now sometimes send an informative message if his realized bias is close

enough to b (proposition 5).11

These results already contain statements about room choice with uncertainty: If truth-

telling is greatly reduced or becomes impossible, there is not much to be gained from being

11This graphic is meant as an illustration and ignores the fact that, while the interval’s length re-
mains constant, its precise location may shift depending on the exact beliefs of the receiving players in
equilibrium.
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in one room. Of course, truth-telling between people with identical bias distributions is

not necessarily easier – note that proposition 4 contained no assumption that people

differ in how their biases are distributed. So are the effects of uncertainty simply to make

communication hard in general? Not necessarily. Consider a model where full integration

is welfare-optimal and an equilibrium if biases are known. We can show that for any such

model, uncertainty can cause segregation between groups to become Pareto-superior to

integration, and such segregation may also be an equilibrium of the room choice game.

Proposition 8. Let the number of players be weakly larger than 4 and let bei ∈ {0, b},
with b ∈

(
0, n−1

n
(2p− 1)

]
. Let the two bias groups be of equal size, i.e. n0 = nb = n/2.

Then in the room-choice game:

• If bi = bei with certainty, the fully integrated room is welfare-optimal and an equilib-

rium.

• If biases are uncertain, we can find distributions Fi that keep all bei constant such

that full segregation between the two bias groups is welfare-optimal. For α ≥ 2
n−2 ,

this is also an equilibrium.

(Proof on page 45.)

To illustrate this result, let us return to the example on taxation from the introduction,

and assume that the world consists of liberals and conservatives. Liberals generally prefer

higher taxes than conservatives, but everybody is aware that the optimal tax level depends

on how bad taxes are for economic growth. If the exact political preference of each person

is known, an informative exchange is possible even across party lines as long as preferences

are not too different. But now assume that instead, each member of each political group

is either a moderate or an extremist. It is only observable whether anyone is liberal or

conservative, not whether they are extremists or moderates. Both have equal probability,

so that in expectation each person is still an “average” liberal or conservative.

Consider the problem of a liberal who is unsure whether he is listening to a moderate

conservative or a conservative extremist. He knows that a conservative extremist would

always tell a liberal that taxes are bad for the economy, regardless of what his information

is. Any statement about the damages of taxes has hence become less informative, while

being more likely to be made, than if the liberal was talking to an average conservative.

The same is true for a conservative listening to a liberal. Yet while discussion across

party lines has become less informative, this is not true for discussion within parties: The

possible biases within groups are still close enough so that both moderates and extremists

want to truthfully reveal their knowledge to other members of their party. It is hence

better for liberals to only talk to other liberals and for conservatives to only talk to

conservatives, than for any cross-party discussion to take place – not because of inherent

differences in preferences, but because of uncertainty about who one’s interlocutor is.

24



6. Empirical Evidence from Twitter

The main mechanism in our model is that information transmission may be impossible if

there is a large difference in preferences between a sender and his expected audience. All

other results follow from people’s rational response to this mechanism. In this section,

we consider a real-life communication environment in which people can be thought of as

having both different ideologies (i.e. bias) and different information, and engage in debate.

In particular, we will analyze data from the micro-blogging service Twitter.

Twitter allows its users to send short messages of 140 characters12 either to people

who have followed them (“tweets”), or to specific receivers (“replies”). Replies are also

public, and are especially visible to followers of the sender, the receiver, or to people who

are reading a specific “thread” that was started by a message.

This coexistence of different audiences creates a natural environment to study the

messages that individuals send when they believe they are talking to an audience of mostly

like-minded people, or to a mixed audience, or to an audience of people they disagree with.

In particular, we will examine whether we can see signs of information transmission being

harder across large ideological differences, and of how people rationally respond to this

difficulty. To do so, we first need to find a way to measure people’s ideology, and can then

consider interactions between different senders and receivers. The following paragraphs

describe our data collection and analysis step by step.

6.1. Preliminary Steps

First step: Building a dictionary We analyzed the tweets of all 535 current members

of the U.S. Congress (100 senators and 435 members of the house of representatives) to

build a dictionary of partisan words and bigrams (groups of two words). For that, we

counted how often each word or bigram was used by Democratic and Republican members

of Congress, and isolated the words whose usage was (i) high enough and (ii) different

enough between parties.

Table 1 has some examples for partisan words. Note that the differences in usage

might derive from using different words for the same thing (talking about “Obamacare”

vs “affordable care act”) or from different focuses (talking about “Iran” vs talking about

“women”). We are agnostic about where the differences come from.

The table also shows that the most intensely partisan words are often those used less

frequently – in fact, all the words in the table on the right are used only by one side. We

weight words according to their frequency to avoid over-extrapolating from small samples.

Second step: Scoring accounts Armed with this partisan dictionary, we can identify

a person’s political leanings purely based on their twitter feed. For each word or bigram

12Since November 2017: 280 characters. However, our data was collected before this change in Twitter’s
policy.
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Democrats Republicans
access spend
health tune
invest via
women Iran
afford Obama
worker #senatemajldr
opioid Obamacare

Republican Collins
Trump McConnell
GOP #obamacare

Democrats Republicans
#stonewall barrow

mink @goshock
eastside korda
#vayp ocar
kobach #neag

#taxseason #ruleoflaw
#broadbandprivacy beckley

#confirmlynch @heralddispatch
#killthebill @fgpao

#repdankilde ouachita

Table 1: Left: Most partisan words among the words that were used very often (more
than 1000 times) in our sample. “#senatemajldr” is a hashtag for the (Republican) Senate
Majority Leader McConnell; Susan Collins is a Republican senator.
Right: Most partisan words among words that were used at least 10 times in our sample.
(Note that these expressions are stemmed.)

that this person uses and which is found in our dictionary, we assign a score based on how

differently the term is used between parties. In the end, we arrive at an overall score for

that person, based on all partisan terms they have used.

To demonstrate the effectiveness of our partisan dictionary, we have created scores for

a number of political journalists and pundits, whose political leaning is known but who

are not part of our sample.13 If our dictionary works well at scoring, we should be able

to separate the journalists and pundits into partisan camps, only based on their twitter

feed. Table 4 on page 48 of the appendix shows that we are able to do so with about 80%

accuracy.

Third step: Sampling random twitter users We randomly sampled a number of

twitter users who (i) mostly or exclusively tweeted in English, (ii) had tweeted at least

3000 times, (iii) had at least 1000 followers, (iv) wrote some tweets of their own (and did

not only re-tweet other people’s tweets), and (v) tweeted sufficiently often about political

topics (i.e. used enough terms from our political dictionary).

We scored these random twitter users based on their original tweets, i.e. all tweets

that were not replies to or retweets of other tweets, so that each user is assigned a location

on a left-right scale.

Fourth step: Making use of different visibilities When “tweeting”, users’ texts are

read by different audiences, based on what type of tweets they are.14 Simple tweets by

13We used the list of the 20 most influential journalists and blogger on the right and left, respectively,
from StatSocial (2015).

14See here for how the company itself describes visibility: https://help.twitter.com/en/using-
twitter/types-of-tweets
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user X are shown in the timelines of all users who follow X. A reply by user X to user Y

is shown in the timelines of users who follow either X or Y.

Given that we have scored random twitter users based on their original tweets (which

are only shown to their own followers), we can now examine how these twitter users

interact with other twitter users, given that such interactions (if they are replies) are

visible to a different audience than the tweets based on which we have scored the user.

6.2. Actual difference-in-difference analysis

Using our work from the previous steps, we have generated a data set containing 12,043

reply tweets sent from 87 senders to 3,730 receivers. For each of these interactions, we can

determine the political score of the sender and the receiver, as well as the properties of the

interaction itself. This allows us to examine how the nature of communication changes in

the ideological distance between sender and receiver.

If we apply the ideas of our model, we would predict that with a larger ideological

distance, the communication of actual information becomes harder and babbling becomes

more likely. It is, however, not entirely clear what “babbling” is in this context, and

which observable criteria it would have. Any language obtains meaning only through the

equilibrium interplay between the sender’s intention to communicate truthfully and the

receiver’s belief in the truthfulness of messages. Statistically speaking, babbling could

hence look like meaningful communication in any number of dimensions, or deviate only

in some specific dimensions.

It is possible to take a slightly agnostic position on what babbling looks like and instead

focus on the consequences of babbling. If we assume that people want to communicate

actual information and that this becomes harder with larger ideological differences, we

should expect people to adapt by changing the frequency or nature of their messages. In

particular, we can think of three responses. First, people who find it hard to communicate

with ideologically distant others will communicate more with those who are ideologically

close. Second, if information exchange is hard, people will send more emotional and

negative messages without much content – simply for emotional reasons and without

trying to communicate any information. Third, if the communication of unverifiable

information is hard, some people may try to communicate information anyway by making

more complex arguments and providing verifiable information. We will take each of these

three effects in turn, and show that they are all present in our data.

Less communication if ideological distance is larger We can show that there

are fewer interactions across the ideological spectrum, compared to interactions between

people with similar ideology. This is what our model would predict. Figure 6.2 shows this

relationship including a linear best fit; table 5 in the appendix shows the exact regression

results. The relationship is strongly positive, meaning that the more right-wing a Twitter
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Figure 8: Political score of the sender and the receiver for 12043 interactions. The line
shows the linear best fit (with a gray 99% confidence interval).

user is, the more he will on average interact with other right-wing Twitter users.15 If

we split the writers of tweets in our sample into quartiles depending on their political

score, the lowest quartile will on average reply to tweets by people with a score of 0.4234,

while the highest quartile will respond to people with an average score of 0.4752. (The

standard deviation of receiver scores in our sample is 0.09.) This is consistent with people

refraining from communication across ideological boundaries because it is harder, and it

supports the existence of “echo chambers” in how people interact in our dataset.16

More short, negative tweets When cheap-talk communication is difficult, people may

send messages to each other for other reasons than to transmit information. A person

who is confronted with a political opinion they disagree with may simply wish to voice

their disapproval by sending a short, emotional and negative message. We can check for

evidence of such behavior by examining the interaction between the length of a tweet, its

emotional content, and the ideological distance between sender and receiver. We measure

a tweet’s emotional content using the sentiment dictionary by Hu and Liu (2004), which

15Of course, there is already some inbuilt bias in the ideological leaning of the people whom a user
follows, and whose tweets he is hence most likely to see. This would in turn influence whom he responds
to. But we would argue that since this bias results from the user’s choice, it is endogenous and therefore
consistent with users following people with whom communication is easier.

16Of course, we are not the first to show segregation on twitter – consider, for example, the studies by
Barberá et al. (2015) or Krasodomski-Jones (2017).
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gives scores to certain words and phrases that mark positive or negative content. Consider

the following linear model (in which αi represents a sender fixed effect):

sentiment = αi+β(absolute score difference)+γ(tweet length)+δ(score difference ∗ tweet length)

Table 2 shows that β < 0, γ > 0 and δ > 0.17 In words: (i) Reply tweets are more

negative the larger the ideological distance between sender and receiver; (ii) short tweets

contain more negative emotional words than long tweets; and (iii) short tweets are more

negative, the larger the ideological distance between sender and receiver. Figure 9 shows

the same relationship graphically.

Dependent variable:

sentiment score

log(tweet length) 0.048∗∗∗

(0.026, 0.070)
p = 0.00002

abs(score difference) −1.055∗∗

(−1.868, −0.241)
p = 0.012

log(tweet length):abs(score difference) 0.233∗∗

(0.025, 0.440)
p = 0.028

Sender fixed effects Yes

Observations 5,473
R2 0.061
Adjusted R2 0.046

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Tweets are more negative if they are shorter and sender and receiver differ ideo-
logically; the latter relationship is especially strong for short tweets. (Values in brackets
show the 95% confidence interval.)

More long and complex tweets with hyperlinks Of course, unverifiable cheap talk

is not the only way that people can exchange information. An opponent who suspects

me of wanting to mislead him has no reason to believe my statement that “I think you

are wrong”. “Look at this report by the national statistical office which shows that you

are wrong”, however, is another thing. Some minds can also be changed by language

if it does not just transmit viewpoints, but complex arguments – consider, for example,

17The number of observations is smaller than for the previous steps of the analysis since only a fraction
of tweets contain enough terms to conduct a sentiment analysis.
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Figure 9: Linear model predictions of the emotional content of tweets as a function of
tweet length for large ideological distance (red dashed line) and small distance (blue
solid line). Long tweets are statistically indistinguishable, but short tweets between ide-
ologically different people are much more negative than between similar people. (95%
confidence interval in gray.)

that a reader may be unconvinced that our theorem 1 is correct until they have read the

proof on page 37. In the context of internet debate, such “verifiable” information would

usually take the form of hyperlinks (to presumably reliable sources of information) and

more complex language.

We can measure such attempt at persuasion (as opposed to cheap talk) by considering

whether reply tweets grow longer, more complex (measured by average word length18)

and contain more hyperlinks as the score difference between sender and receiver increases.

Table 3 shows that this is the case.

7. Discussion

7.1. Who provides the Rooms?

In our model, we have assumed that the rooms are available in sufficient quantity so

that players who want to segregate themselves can do so. In reality, that is of course

not guaranteed. Information exchange could literally be impossible for lack of an empty

room, such as when co-workers find themselves unable to discuss sensitive questions in an

open-plan workspace. Bernstein and Turban (2018) have shown that the creation of open-

plan offices tends to decrease the number of (public) face-to-face interactions and increase

18Average word length is an integral part of many widely-used readability scores, such as the Automated
Readability Index or the Coleman-Liau-Index.
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Dependent variable:

log(tweet length) log(mean word length) link dummy

(1) (2) (3)

absolute score difference 0.378∗∗∗ 0.205∗∗∗ 0.172∗∗∗

(0.198, 0.559) (0.126, 0.284) (0.042, 0.302)

Sender fixed effects Yes Yes Yes

Observations 12,019 11,975 12,034
R2 0.137 0.082 0.199
Adjusted R2 0.131 0.075 0.194
p-value 0.00005 0.00000 0.00964

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Tweets get longer, more complex, and contain more hyperlinks as the ideolog-
ical difference between sender and receiver increases. (Values in brackets show the 95%
confidence interval.)

the number of (segregated) electronic interactions among colleagues. Or the shortage of

rooms could be more figurative, such as when a politician may want to discuss his doubts

of a policy with colleagues but cannot find a forum in which to do so without potentially

giving ammunition to his political opponents.

In both cases, we have seen that segregation may be in the interest of everybody

involved. It benefits not just the sender and the receiver in the segregated room, but even

those who end up being excluded – since their inclusion would render communication

impossible and thus not benefit anyone. Since rooms provide such clear benefits and are

not automatically available, those in need of them should be willing to pay for whoever

can provide them. We could imagine a group of agents who are sufficiently polarized and

caught together in one place, which makes them unable to exchange any information.

If now a plucky entrepreneur opened a separate room and took a small entrance fee, it

would be an equilibrium for one group of agents to each pay the fee, enter the room – and

improve their own and everybody else’s situation.

We think that this fable provides a way to understand the success of social messaging

platforms such as Facebook, Twitter, WhatsApp and Snapchat. Each of these allows

its users to send messages (and other content) to certain groups of others, with varying

possibilities of exclusion. It can seem from the outside as if the service that is provided is

to connect people with each other, but our model suggests it is just as much to exclude

some people and not others, while providing sophisticated ways to determine who should

and should not be excluded.19 This has a strict economic logic to it: Once the Internet

19Facebook, for example, allows its users among other things to (i) choose which of their data is visible
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is available and ubiquitous, simply connecting people is not a scarce resource or service.

But connecting them in such a way that they want to communicate truthfully, and can

exchange the information they want to exchange, is much harder, and those who do it

well can make a profit.

7.2. Political Parties and “Safe Spaces”

Of course, the room structure need not be provided by the market, it could be created by

the agents themselves so that they can communicate with others who share their interests

and world view. Besides the obvious examples of clubs and societies, we think that this is

one rationale for the existence of political parties. In a society that is polarized enough,

political parties can help solve the problem of aggregating political views and opinions.

We should also note that while messages are meaningless if a player is not truth-telling

in equilibrium, the messages that he is most reluctant to send are those that could be

seen as being counter to his own interest. For example, if an agent’s bi is much lower

than the average of all bj, he has no problem truthfully reporting σl, but is more reluctant

after σh. This is how political parties can be useful: by providing a secluded forum in

which, for example, members of a party can discuss the flaws and merits of their own

candidates or programs. They would not be able to have this kind of discussion in the

presence of members from other parties, where they would become overly defensive of

“their” candidates and programs.

But the problem of defensiveness also provides an argument for so-called “safe spaces”,

i.e. spaces in which minorities or marginalized groups can communicate without outside

interference. Informationally, such safe spaces may provide opportunities to communicate

that would otherwise not exist. Consider the problem of two vegetarians who privately

doubt whether vegetarianism is indeed a sensible choice – yet they find themselves de-

fending it whenever they talk to (or in the presence of) non-vegetarians. Providing a

“safe space” for vegetarians would allow them to discuss freely, and would hence provide

a Pareto-improvement.

7.3. Rooms as Commitment and Information Design

The main unit of groups in our model is the room, in which everybody communicates with

everybody and which is disjoint from other rooms. This allows us not just to examine

the influence of bias differences on communication, but also the disciplining as well as the

destructive effects of room composition.

Consider, for example, a setting in which person 1 is willing to tell the truth to 2,

and 2 is willing to tell the truth to 3, but 1 is not willing to tell the truth to 3 (and all

to search engines, (ii) choose for each post and image whether it is visible to everybody or just friends
or friends of friends or even select group of friends (iii) block individual other users from seeing certain
content (iv) create public or private events or groups to which members can be invited, (v) message
directly with selected users or groups of users. All of these are tools of intelligent segregation, not
connection.
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relationships hold vice versa). If we were to simply allow 1, 2 and 3 to form bi-directional

communication links, that would be the end of it. But if they need to communicate within

rooms, the effects are more interesting: 2’s presence could discipline 1 or 3’s message, and

hence make communication possible between people who would not otherwise be able to

exchange information. Or 3’s presence could prove to be a centrifugal force to the whole

room and make communication between 1 and 2 impossible without inducing 2 to tell the

truth to 3, thus shutting down any communication.

We can hence think of rooms as an information design tool, and room allocation as an

information design problem – where other room members provide a source of commitment.

The results we have derived in section 2.2 show exactly how and when that is possible. For

example, a social planner that wants to achieve a maximum of communication between

ideologically distant groups could rely on the addition of moderates. In situations where

individual information can never be observed – neither ex ante nor ex post – this may

well be the only information design tool available.

7.4. When are echo chambers bad?

Criticisms of segregated debate or echo chambers commonly rely on a combination of

informational and behavioral arguments. The most common informational point is that

diversity of information sources increases the accuracy of information. Behavioral argu-

ments usually hold that people do not learn correctly if only faced with some opinions.

Our model suggests that we should take the informational arguments with a grain of salt,

and that even if we believe in the behavioral factors, they do not necessarily amount to

an argument for full integration.

Diversity. Our model considers gains from diversity in the sense that one’s information

gets more accurate (and hence one’s decision better), the more people one hears from.

We can thus weigh a well-known benefit of diversity (more information) against its less-

discussed cost (problems with communication). An additional line of argument may

assume that information is more closely correlated between people with similar biases –

so that interaction with people with different biases becomes more valuable. Even that,

however, does of course not solve the problem that communication across large preference

differences may still be impossible, no matter how valuable the information that the other

side holds.20 Overall, there is simply no use in meeting people with a very diverse set of

opinions and very useful information, if there is no way to get that information out of

them.

20We consider an extension of a model in which there is only one state, and people with similar bias
receive correlated information about it, in the supplementary material.
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Behavioral arguments. Once they hear only from people who are like them, people

may fail to account for the correlation between the messages they receive.21 Or they may

fail to correctly learn in other, less well-defined ways, all of which make it harder for them

to infer the state of the world from hearing only one side of the story. None of this, however,

means in itself that a person would learn more if also exposed to viewpoints that they

would not normally encounter, if their interlocutor rationally adjusts the informativeness

of his message depending on whom he wants to inform and whom not.

Segregation by taste. There are two ways of applying the insights of this paper.

The first, which we have used in developing our argument, is to see segregation as an

informationally rational and welfare-optimal choice. Another perspective would be to

assume that people segregate for exogenous or emotional reasons, or simply for reasons

of taste. For example, rich people live in rich neighborhoods because of nicer houses and

better infrastructure, and the segregation of types is only a secondary effect. But is such

segregation necessarily informationally inefficient and bad for welfare? Our model suggests

that this need not be the case. While rich people could surely learn from exchanging

information with people whose lifestyle is different from theirs, it is far from given that

such communication successfully takes places if we simply bring rich and poor together.22

Even taste-based homophily can end up improving everyone’s information.

8. Conclusion

Modern democratic societies have three main mechanisms to aggregate information: De-

bates, markets, and votes. Of the three, debate is arguably the oldest – and while the

other two require an organized framework and somebody who can enforce the rules, debate

just needs an ability to speak and to listen.

But when will people speak truthfully (and hence have reason to listen)? In this paper,

we have argued that if people have different preferences as well as different information,

segregation into like-minded, homogeneous groups can be individually rational and Pareto-

efficient. Echo chambers are not necessarily as destructive as popular discourse can make

them seem. But even more importantly, we have shown that if segregation happens, it is

not in itself the cause of an inability to debate. Instead, the existence of echo chambers is

the consequence of differences in preferences, and of uncertainty and mistrust about other

people’s motives.

This has implications for how to improve debate. Society has a lot to gain from getting

people with diverse backgrounds, experiences and opinions to exchange their views. But

21C.f. the experimental work by Kallir and Sonsino (2009) and Eyster and Weizsäcker (2011) on “cor-
relation neglect”.

22Policies that may be more successful, following the results of our model, are: Narrowing the conflict of
interest between rich and poor; convincing them that they have common goals; or reducing the uncertainty
about each other’s interests.
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this can not simply be achieved by forcing or cajoling people to interact who would not do

so out of their own choosing. In fact, that could be counter-productive, as it could destroy

disjoint echo chambers in which communication works, in favor of large integrated groups

in which it does not. Our research, which we have set out in this paper, suggests that

meaningful debate can only happen if the participants feel that they have sufficiently much

in common and they trust each others’ motives. That may be a taller order than simply

putting people into a room and expecting them to come out smarter and in agreement.

But functioning debate requires consideration for the motivations of the debaters.
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Appendix

A. Proofs for the Model with Certainty

Proof of lemma 1 on page 10.

Let (m1, . . . ,mn) be an equilibrium. Player i’s expected payoff when sending message mi

to players in room Ri can be written as

Ui(mi|σi) = E

−(ai(m−i,Ri
, σi)− bi −

n∑
k=1

θk

)2

− α
∑
j 6∈Ri


(
aj(m−i,Rj

, σj)− bi −
n∑
k=1

θk

)2


−α
∑

j∈Ri,j 6=i


(
aj(mi,m−i,Ri

, σj)− bi −
n∑
k=1

θk

)2

∣∣∣∣∣∣σi
 .

which can be split in a part that is independent of i’s message mi and a part that depends

on mi:

Ui(mi) = E

const− α ∑
j∈Ri,j 6=i

(
aj(mi,m−i,Ri

, σj)− bi −
n∑
k=1

θk

)2
∣∣∣∣∣∣σi
 .

Specifically, sending message mh gives expected payoff

Ui(m
h) = E

const− α ∑
j∈Ri,j 6=i

(
bj − bi + µhji +

∑
k 6=i

µjk − θi −
∑
k 6=i

θk

)2
∣∣∣∣∣∣σi


where µhji = E[θi|mi = mh] , i.e. µhji is the belief of a player j in the same room as i

concerning θi if player i sends message mh. Note that this belief is the same for all players

j 6= i in the same room as i. Sending message ml gives

Ui(m
l) = E

const− α ∑
j∈Ri,j 6=i

(
bj − bi + µlji +

∑
k 6=i

µjk − θi −
∑
k 6=i

θk

)2
∣∣∣∣∣∣σi

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where µlji = E[θi|mi = ml]. The difference in expected payoff is then

∆Ui(σi) = (Ui(m
h)− Ui(ml))/α

= −
∑

j∈Ri,j 6=i

E

[
µhji

2 − µlji
2

+ 2(µhji − µlji)

(
bj − bi +

∑
k 6=i

µjk − θi −
∑
k 6=i

θk

)∣∣∣∣∣σi
]

= −2(µhji − µlji)
∑

j∈Ri,j 6=i

[
µhji + µlji

2
+ bj − bi − E [θi|σi]

]

= 2(µhji − µlji)(nRi
− 1)

[
−
µhji + µlji

2
−
∑

j∈Ri,j 6=i bj

nRi
− 1

+ bi + E [θi|σi]

]
(3)

where nRi
denotes the number of players in room Ri. (For the transformation to line 3,

we make use of the fact that µji is the same for all j ∈ Ri.)

Player i is only willing to choose a mixed strategy after receiving signal σi if ∆Ui(σi) =

0. From expression (3) it is clear that this can only be true for at most one signal as

E [θi|σi] varies in the σi. Furthermore, Ui(σ
h) = 0 implies Ui(σ

l) < 0 and similarly

Ui(σ
l) = 0 implies Ui(σ

h) > 0.

Now suppose i’s equilibrium strategy mi is mixed after signal σh. Then, Ui(σ
h) = 0

implies Ui(σ
l) = 2(µhji−µlji)(nRi

−1)(1−2p) < 0 and therefore mi(σ
l) = ml which implies

µhji = p as a mh is only sent by i after receiving signal σh. This implies (µhji+µlji)/2 ≥ 1/2

as µlji ≥ 1 − p. Now consider the equilibrium candidate (mt
i,m−i). With the truthful

strategy mt
i, µ

th
ji = p and µtlji = 1 − p and therefore (µthji + µtlji)/2 = 1/2. This implies

that Ui(σ
h) > 0 in the equilibrium candidate (mt

i,m−i), i.e. truthful reporting is optimal

for i after receiving signal σh. In the equilibrium candidate (mt
i,m−i), truthful messaging

is still optimal after signal σl as well: From p > 1/2, µhji ≤ p and µlji ≤ 1/2 it follows

that −1/2 + (1 − p) < −
(
µhji + µlji

)
/2 + p. As in the original equilibrium (mi,m−i) we

had ∆Ui(σ
h) = 0 and therefore −

(
µhji + µlji

)
/2 + p =

∑
j∈Ri,j 6=i bj/(nRi

− 1) + bi, we get

that −1/2 + 1 − p <
∑

j∈Ri,j 6=i bj/(nRi
− 1) + bi and therefore Ui(σ

l) < 0 in the truthful

equilibrium candidate (mt
i,m−i). Hence, truthful messaging is i’s best response in the

equilibrium candidate (mt
i,m−i). Finally, note that the ∆Uj(σj) for j 6= i is not affected

by changing i’s strategy from mi to mt
i. Hence, (mt

i,m−i) is an equilibrium.

The argument in case i’s strategy is mixed after signal σl is analogous.

Proof of theorem 1 on page 11.

Consider again the difference between lying and truth-telling for player i that we con-

sidered in equation (3) in the proof of lemma 1. Following corollary 1, we only consider

pure strategies and therefore for every non-babbling player µhji = p and µlji = 1− p which
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implies that ∆Ui(σ
h) ≥ 0 simplifies to

1

nR − 1

∑
j∈Ri,j 6=i

(bi − bj) ≥
1

2
− p

bi −
1

nR − 1

∑
j∈Ri,j 6=i

bj ≥
1

2
− p

nR
nR − 1

bi −
1

nR − 1

∑
k∈Ri

bk ≥
1

2
− p

bi ≥ b− nR − 1

nR

(
p− 1

2

)
.

If this inequality does not hold, player i will not use the truthful strategy in the most

informative equilibrium and by corollary 1 this implies that he will babble in the most

informative equilibrium.

We can analogously solve for ∆Ui(σ
l) and get the interval used in the proposition.

Proof of proposition 1 on page 12.

Denote the sets of babbling and truthful players in roomRj asRbab
j andRtruth

j , respectively.

For a given room allocation, the expected payoff of player i in room Ri is

Ui = −E

 ∑
j∈Rtruth

i ∪{i}

(µij − θj) +
∑

j 6∈Rtruth
i ∪{i}

(
1

2
− θj)

2

+α
∑

j∈Ri,j 6=i

bj − bi +
∑

k∈Rtruth
i ∪{j}

(µjk − θk) +
∑

k 6∈Rtruth
i ∪{j}

(
1

2
− θk)

2

+α
∑
j 6∈Ri

bj − bi +
∑

k∈Rtruth
j ∪{j}

(µjk − θk) +
∑

k 6∈Rtruth
i ∪{j}

(
1

2
− θk)

2 .
For any i 6= j, the two values of θi and θj are independent; the same is true for µij and

µik. Hence E [µij − θj] = 0 and E [(µij − θj) (µik − θk)] = 0, which means that the above

expression can be rewritten as

Ui = −
∑

j∈Rtruth
i ∪{i}

E
[
(µij − θj)2

]
−

∑
j 6∈Rtruth

i ∪{i}

E
[
(
1

2
− θj)2

]

−α
∑

j∈Ri,j 6=i

(bj − bi)2 − α
∑

j∈Ri,j 6=i

∑
k∈Rtruth

i ∪{j}

E
[
(µjk − θk)2

]
− α

∑
j∈Ri,j 6=i

∑
k 6∈Rtruth

i ∪{j}

E
[
(
1

2
− θk)2

]

−α
∑
j 6∈Ri

(bj − bi)2 − α
∑
j 6∈Ri

∑
k∈Rtruth

j ∪{j}

E
[
(µjk − θk)2

]
− α

∑
j 6∈Ri

∑
k 6∈Rtruth

i ∪{j}

E
[
(
1

2
− θk)2

]
.
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Now note that E [(µjk − θk)2] can have two possible values: If k ∈ Rtruth
j ∪ {j}, i.e. if

j has received information about θk, then E [(µjk − θk)2] = p(1− p). If j has not received

information about θk, then E [(µjk − θk)2] = 1
4
. (We can check that information always

reduces variance and increases welfare since p > 1
2

and hence p(1− p) < 1
4
.)

This means that if i is telling the truth, we can write

U truth
i = −α

∑
j 6=i

{(bj − bi)2} −
1

4
[n+ α(n− 1)n]

+(
1

4
− p(1− p))

[
ntruthRi

+ α
∑
R

{
ntruthR ntruthR + (nR − ntruthR )(1 + ntruthR )

}
− αntruthRi

]
.(4)

The first term represents the loss that i suffers because other players choose a decision

that is by bj−bi too high from i’s point of view. The second term represents the (theoreti-

cal) loss that would result if no player had any information and all µ’s were simply 1
2
. The

factors n and (n− 1)n, which sum up to n2, represent the total number of possible pieces

of information in the model: If everybody’s signal was available to everyone, n people

would receive n pieces of information. The term hence represents, for each potential piece

of information, the loss to i of that information not being available.

This loss is mitigated by information, which we see in the second line: i receives his

signal and ntruthRi
− 1 truthful messages, which means that instead of 1

4
, on each of these

pieces of information i loses only p(1 − p) < 1
4
. Other players, about whose decisions

i cares with weight α, also receive some signals/messages: in any given room R, ntruthR

players receive their own signal and ntruthR − 1 truthful messages while nR − ntruthR players

(those that babble in R) receive ntruthR truthful messages and their own signal. (We have

to subtract the correction term −αntruthRi
for room Ri in which there are only ntruthRi

− 1

other players who tell the truth – in other words, i cannot count himself again as one of

the players who receive information.) Analogously, we can write

U bab
i = −α

∑
j 6=i

{(bj − bi)2} − 1/4 [n+ α(n− 1)n]

+(1/4− p(1− p))

[
1 + ntruthRi

+ α
∑
R

{
ntruthR ntruthR + (nR − ntruthR )(1 + ntruthR )

}
− α(1 + ntruthRi

)

]
. (5)

In both the expressions for U truth
i and U bab

i , the second lines are adjusting the (pes-

simistic) expression in the first line for the reduction in variance by information. We can
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simplify both expressions by simply writing

Ui = −α
∑
j 6=i

{(bj − bi)2} − 1/4 [n+ α(n− 1)n] + (1/4− p(1− p))

[
ζi + α

∑
j 6=i

ζj

]
(6)

and express welfare as

W =
∑
i

Ui =
∑
i

[
−α
∑
j 6=i

{(bj − bi)2} − 1/4 [n+ α(n− 1)n] + (1/4− p(1− p))

[
ζi + α

∑
j 6=i

ζj

]]

= −α
n∑
i=1

∑
j 6=i

{(bj − bi)2} −
1

4
n2 [1 + α(n− 1)] + (p− 1

2
)2(1 + α(n− 1))

∑
i

ζi.

In this expression, all terms are model parameters except for the sum over all ζi, which

shows that welfare is linearly increasing in
∑

i ζi.

Proof of proposition 2 on page 14.

Let ∆ζi be the change in ζi that results from a deviation, and ∆
∑

j 6=i ζj the change in∑
j 6=i ζj resulting from the same deviation. We know that in the welfare-optimal room

allocation, there can be no deviation by a single player that would increase welfare. That

means that in the welfare-optimum, it must be

∆ζi + ∆
∑
j 6=i

ζj ≤ 0. (7)

The condition that there is no profitable deviation for player i is

∆ζi + α∆
∑
j 6=i

ζj ≤ 0, (8)

which is identical except for the factor α. From this we can immediately see that 7 implies

8 if α = 1.

Proof of theorem 2 on page 17.

Recall that a truth-telling equilibrium exists if and only if for every player i it is∣∣∣∣∣∑
k 6=i

{bk/(n− 1)} − bi

∣∣∣∣∣ ≤ 1

2
.

This can be rewritten as |
∑

k{bk} − nbi| /(n − 1) ≤ 1
2
. If η is sufficiently small, this

inequality holds for all players and all signals. Clearly, having all players in one room and

telling the truth is welfare optimal whenever it is feasible, and no player can gain from
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leaving the room.

If
∣∣∣∑k∈Ri,k 6=i{bk/(n− 1)} − bi

∣∣∣ > 1
2
, then i will not be truthful when receiving either

signal σl or σh. Generically,
∣∣∣∑k∈Ri,k 6=i{bk/(n− 1)} − bi

∣∣∣ 6= 0 for any room configuration

containing players from more than one bias group. (This follows from the finiteness of

players which implies that the number of such room configurations is finite.) Now observe

that the left hand side of the non-truthtelling inequality is scaled by η while the right

hand side is not. That is, for η sufficiently high, player i will report the highest (lowest)

signal in all rooms in which
∑

k∈Ri,k 6=j bk < nRi
bi (
∑

k∈Ri,k 6=j bk > nRi
bi). Put differently,

any room that contains one or more players of a bias not equal to bi will lead to totally

uninformative messages by i if η is sufficiently high. For high enough η, this holds true

for all players and it is then obvious that full separation is both welfare maximizing and

an equilibrium.

Proof of proposition 3 on page 20

Take two values of η, namely η′ and η′′ > η′. Denote a welfare optimal room assignment

under η′′ by R′′. Consider the same room assignment R′′ with biases η′. In each room

the number of pieces of information is weakly higher with set of biases Bη′ than with set

of biases Bη′′ : By theorem 1 a player i is truthtelling if and only if ηb −
nR′′

i
−1

nR′′
i

(p − 1
2
) ≤

ηbi ≤ ηb+
nR′′

i
−1

nR′′
i

(p− 1
2
). Hence, player i will be truthtelling in room R′′i with biases in Bη′

if he is truthtelling in R′′i with biases Bη′′ by η′ < η′′. Consequently, there is weakly more

information transmitted in every room given assignment R′′ under η′ than under η′′ > η′.

This implies W (η′) ≥ W (η′′) by proposition 1.

B. Detailed Analysis and Proofs for the Model with Uncertainty

B.1. Preliminary Analysis

Similarly to the derivation of expression (3), we can write

Ui(m
h) = E

const− α ∑
j∈Ri,j 6=i

(
bj − bi + µhji +

∑
k 6=i

µjk − θi −
∑
k 6=i

θk

)2
∣∣∣∣∣∣σi


Ui(m
l) = E

const− α ∑
j∈Ri,j 6=i

(
bj − bi + µlji +

∑
k 6=i

µjk − θi −
∑
k 6=i

θk

)2
∣∣∣∣∣∣σi
 .

Note that we are interested in the difference of the two expressions. Hence, while all bjs

are now unknown, this uncertainty only matters where bj is multiplied by µhji and µlji,
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respectively. We can hence write

∆Ui(σi) = (Ui(m
h)− Ui(ml))/α

= 2(µhji − µlji)(nRi
− 1)

[
−
µhji + µlji

2
−
∑

j∈Ri,j 6=i b
e
j

nRi
− 1

+ bi + E [θi|σi]

]
, (9)

which is identical to (3) except that we have substituted bej for bj. i’s problem remains

virtually unchanged, except that he now considers the expected value of biases of other

people within the room.

Now consider i’s messaging strategy. In the following, let

λh = Pr(mi = mh|σi = σh) and

λl = Pr(mi = ml|σi = σl)

i.e. λh and λl are the marginal probabilities with which i truthfully reveals his signal,

averaging over all possible bias types. For example, if bi has two possible values with equal

probability and i only reveals σh truthfully for one of them, then λh = 1
2
. The resulting

beliefs of player j are

µhji =
pλh + (1− p)(1− λl)

1 + λh − λl

µlji =
p(1− λh) + (1− p)λl

1− λh + λl
.

We can also write the following two terms, which both appear in equation (9):

µhji − µlji =
2pλh + 2pλl − 2p− λh − λl + 1

(λh − λl + 1)(λl − λh + 1)

= (2p− 1)
(λh + λl − 1)

(λh − λl + 1)(λl − λh + 1)
(10)

µhji + µlji =
2pλh − 2p

(
λh
)2 − 2pλl + 2p

(
λl
)2 − 2

(
λl
)2 − λh + λl + 2λhλl + 1

(λh − λl + 1)(λl − λh + 1)

=
4p
(
λl
)2 − 2

(
λl
)2 − 4pλhλl + 2λhλl + 2pλh − λh − 2pλl + λl − 2p+ 1

(λh − λl + 1)(λl − λh + 1)
+ 2p

= (2p− 1)
2
(
λl
)2 − 2λhλl + λh − λl − 1

(λh − λl + 1)(λl − λh + 1)
+ 2p

= (2p− 1)

( (
λl
)2 − λhλl − λl

(λh − λl + 1)(λl − λh + 1)
+

(
λl
)2 − λhλl + λh − 1

(λh − λl + 1)(λl − λh + 1)

)
+ 2p

= (2p− 1)

(
λl

λh − λl − 1
+

λl − 1

λh − λl + 1

)
+ 2p. (11)
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From (10), we can see that the condition µhji ≥ µlji translates to λh + λl ≥ 1. We can

distinguish two cases:

• λh + λl = 1. Then µhji − µlji = 0 and i’s messages are completely uninformative.

• λh+λl > 1. We will focus on this case, in which messages by i have some informative

content.

We can intuitively see that if i’s messages are believed to contain some information about

σi, i should never want to misrepresent σh if bi is high compared to the average bias of

other players (and vice versa if bi is low). In fact, we can show the following result:

Lemma 2. Assume that λh + λl > 1. Then i always strictly prefers to truthfully reveal

(i) σh if bi ≥ E
[∑

j∈Ri,j 6=i bj

nRi
−1

]
and (ii) σl if bi ≤ E

[∑
j∈Ri,j 6=i bj

nRi
−1

]
.

Proof. Consider case (i) and assume that the opposite was true, i.e. ∆Ui(σ
h) ≤ 0 for some

bi ≥ E
[∑

j∈Ri,j 6=i bj

nRi
−1

]
. Then, since (µhji−µlji) > 0 by assumption and bi ≥ E

[∑
j∈Ri,j 6=i bj

nRi
−1

]
, it

must be that
µhji+µ

l
ji

2
−E [θi|σi] > 0 or

µhji+µ
l
ji

2
−p > 0, which means

(
λl

λh−λl−1 + λl−1
λh−λl+1

)
>

0. But we know that λh− λl− 1 < 0 and λh− λl + 1 > 0 from λh + λl > 1, which implies

that
(

λl

λh−λl−1 + λl−1
λh−λl+1

)
< 0. We can analogously prove (ii).

Now we can consider which conditions need to be in place for an equilibrium to exist in

which i tells the truth with probabilities λh and λl. To be clear: We are still considering

pure equilibria, since i has a strict preference for lying or telling the truth for any bi

except for non-generic boundary cases. However, given Fi (the distribution of bi), we can

determine how often i’s messages will be truthful once we have established for which bi i

wants to tell the truth and for which he wants to lie. We can think of λh and λl as the

marginal probabilities of truth-telling by i.

Lemma 3. There exists an equilibrium in which i truthfully reveals σh with marginal

probability λh and truthfully reveals σl with marginal probability λl if and only if

1− Fi
(∑

j∈Ri,j 6=i b
e
j

nRi
− 1

+

(
p− 1

2

)
·
(

λl

λh − λl − 1
+

λl − 1

λh − λl + 1

))
≤ λh

and

Fi

(∑
j∈Ri,j 6=i b

e
j

nRi
− 1

+

(
p− 1

2

)(
λh − 1

λh − λl − 1
+

λh

λh − λl + 1

))
≥ λl.

Both inequalities hold with equality if Fi is continuous at the argument.

Proof. From equation 9 we get that ∆Ui(σi) ≥ 0⇔

bi −
∑

j∈Ri,j 6=i b
e
j

nRi
− 1

≥
µhji + µlji

2
− E [θi|σi] .
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Recall that E
[
θi|σi = σh

]
= p and E

[
θi|σi = σl

]
= 1 − p. We can make use of the

expression for µhji + µlji that we have derived in (11) to get ∆Ui(σ
h) ≥ 0⇔

bi −
∑

j∈Ri,j 6=i b
e
j

nRi
− 1

≥
(
p− 1

2

)
·
(

λl

λh − λl − 1
+

λl − 1

λh − λl + 1

)
and ∆Ui(σ

l) ≤ 0⇔

bi −
∑

j∈Ri,j 6=i b
e
j

nRi
− 1

≤
(
p− 1

2

)(
λh − 1

λh − λl − 1
+

λh

λh − λl + 1

)
.

In an equilibrium, the beliefs of the receivers of mi must be correct on average. In

this case, this means that it must be sufficiently likely for bi to fulfill either of the two

inequalities, which gives us the conditions from the proposition. If Fi is continuous at the

argument, correct beliefs require that the inequalities hold with equality. If it is not, there

could potentially be mixed equilibria in which for the borderline type, i mixes between

different messages and beliefs are correct on average.

Note that that
(

λh−1
λh−λl−1 + λh

λh−λl+1

)
−
(

λl

λh−λl−1 + λl−1
λh−λl+1

)
= 2. Lemma 3 consequently

describes conditions on the distribution function F at two points that are 2p − 1 apart.

In particular if Fi is continuous at these two points the conditions state that probability

mass in the interval between these two points has to equal λl +λh− 1. More importantly,

the conditions can be used to show that player i babbles in a given room if Fi does not

have enough probability mass around the average bias of the other players in the room.

To be precise, if Fi has no probability mass in
∑

j∈Ri,j 6=i b
e
j

nRi
−1 ± (2p− 1), then the conditions

of lemma 2 imply λl + λh = 1 and therefore uninformative messages.23

B.2. Proofs

Proof of proposition 4 on page 22.

Without loss of generality, let b1 and bn be the smallest and largest biases respectively.

We can represent each bias as the expected value of a distribution that only places density

on the values b1− (2p−1) and bn+ (2p−1). For this set of distributions {F1, F2, . . . , Fn},
the conditions of lemma 3 imply λh + λl = 1, and hence there exists no equilibrium in

which any of the players tells the truth.

23To be precise, both points at which Fi is evaluated in lemma 2 lie in the interior of the interval

[
∑

j∈Ri,j 6=i b
e
j

nRi
−1 − (2p− 1) ,

∑
j∈Ri,j 6=i b

e
j

nRi
−1 + (2p− 1) and therefore Fi will be continuous at both points and

equal to the same value if there is no probability mass in this interval. As the conditions in lemma 2 then
hold with equality, they imply λh + λl = 1 which in turn implies µh

ji − µl
ji = 0.
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Proof of proposition 5 on page 22.

We can construct a distribution Fi that has positive density on
∑

j∈Ri,j 6=i b
e
j

nRi
−1 , which means

that the conditions of lemma 3 imply that there exists an equilibrium in which a message

by i is informative.

To achieve full truth-telling (i.e. λh = λl = 1), lemma 3 implies we would have to

be able to construct an Fi that only has density inside the interval
∑

j∈Ri,j 6=i b
e
j

nRi
−1 ±

(
p− 1

2

)
.

However, this would contradict our starting assumption that if bi is bei for sure, there exists

no equilibrium in which i tells the truth.

Proof of proposition 6 on page 23.

By the symmetry of F , all F κ have the same expected value. We can find a κ̄ small

enough so that F κ has less than ε′ > 0 probability mass within
∑

j∈Ri,j 6=i b
e
j

nRi
−1 ± (2p− 1)

for any κ ≤ κ̄. Then it follows from lemma 3 that there exists no equilibrium for which

λl + λh > 1 + ε′. The result follows now from the continuity of (11) and the fact that

µhji − µlji = 0 if λh + λl = 1.

Proof of proposition 7 on page 23.

Let the lower (upper) bound of the support be bi (b̄i). Note that by assumption bi ≤∑
j∈Ri,j 6=i b

e
j

nRi
−1 − (2p− 1) and b̄i ≥

∑
j∈Ri,j 6=i b

e
j

nRi
−1 +(2p− 1) which implies by lemma 2 that player

i sends uninformative messages in equilibrium. Now fix bε =
∑

j∈Ri,j 6=i b
e
j

nRi
−1 − (2p− 1) and

b̄ε =
∑

j∈Ri,j 6=i b
e
j

nRi
−1 + (2p− 1). This implies that µhji − µlji ≤ ε whenever the probability that

bi ≥ b̄ε plus the probability that bi < bε is more than 1− ε′ for some ε′ > 0 (by lemma 2

and the continuity of µ·ji in λh and λl). Let σFi
2 be defined by

σFi

2 = (1−ε′)
(
b̄i − bei
b̄i − bi

(bi − bei )2 +
bei − bi
b̄i − bi

(b̄i − bei )2
)

+ε′
(
b̄ε − bei
b̄ε − bε

(bε − bei )2 +
bei − bε

b̄ε − bε
(b̄ε − bei )2

)
.

Any distribution with variance above σFi
has to have more than ε′ probability mass above

b̄ε or below bε as σFi
is the variance of the distribution maximizing variance under the

constraint that only 1− ε′ probability mass is outside the interval [bε, b̄ε]. Consequently,

any distribution with variance above σFi
will lead to µhji − µlji ≤ ε.

Proof of proposition 8 on page 24.

Fix 0 and a b > 0. Consider the distributions putting probability 1/2 on −(p− 1/2) and

1/2 on p − 1/2 instead of 0 for sure and 1/2 on b − (p − 1/2) and 1/2 on b + (p − 1/2).

Under segregation everyone is (just!) truthtelling. In any room including at least 1 player

with another bias than the own one, a bias 0 (b) player will however lie if his bias is the

lower (higher) element of the support:
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Take for example a player with bias b+p−1/2 that got a low signal. Then ∆U(σl) > 0

can be written as b+ p− 1/2−
∑

j∈Ri,j 6=i b
e
j

nRi
−1 > (µhji + µlji)/2− (1− p). The right hand side

of this inequality is bounded from above by p − 1/2 because µhji ≤ p and µlji = 1 − p by

lemma 2 according to which λh = 1. As b−
∑

j∈Ri,j 6=i b
e
j

nRi
−1 > 0, the claim follows.

To compute welfare under a non-segregated scenario, we need to compute E[(µij−θj)2].
Take, for example, a player j with biases in {b − p + 1/2, b + p − 1/2}. We showed that

this player always sends the high signal if bi = b + p − 1/2 if at least one player of the

other group is in his room. The most informative messaging strategy of such a player in

such a room is therefore truthtelling when bi = b− p+ 1/2 and sending the high message

otherwise. This implies λh = 1 and λl = 1/2 and therefore µhij = (1+p)/3 and µlij = 1−p.
In this case,

E[(µij − θj)2] =
1

2

[
1

2

{
p

(
1 + p

3
− 1

)2

+ (1− p)(−p)2
}

+
1

2

{
p(1− p)2 + (1− p)

(
1 + p

3

)2
}]

+
1

2

[
1

2

(
1 + p

3
− 1

)2

+
1

2

(
1 + p

3

)2
]

=
1

4

[
(1 + p)

p2 − 4p+ 4

9
+ (1− p)p2 + p(1− p)2 + (2− p)1 + 2p+ p2

9

]
=

1

4

[
2

3
+

4

3
p− 4

3
p2
]
.

Following the derivations of player i’s utility in a room that contains players of both

groups, see the proof of proposition 1, we can write player i’s utility if all players are

in the same fully integrated room – and choose the best possible messaging strategy

corresponding to λh = 1 (λh = 1/2) and λl = 1/2 (λl = 1) for players with expected bias

bei = b (bei = b) – as

U int
i = −α

∑
j 6=i

{
(bj − bi)2

}
− [n+ α(n− 1)n] /4 + (1/4− p(1− p))(1 + α(n− 1))

+
(
1/4− [2/3 + p4/3− p24/3]/4

)
[n− 1 + α

∑
j 6=i

{n− 1}]

while his expected payoff under full segregation is

U seg
i = −α

∑
j 6=i

{
(bj − bi)2

}
− [n+ α(n− 1)n] /4 + (1/4− p(1− p))(n/2 + α(n− 1)n/2).
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U seg
i exceeds U int

i if and only if

(1/4− p(1− p))(1 + α(n− 1))(n/2− 1) ≥
(
1/4− [2/3 + p4/3− p24/3]/4

)
[n− 1 + α(n− 1)2]

⇔ (1− 4p+ 4p2))(1 + α(n− 1))(n/2− 1) ≥
(
1/3− p4/3 + p24/3

)
[n− 1 + α(n− 1)2]

⇔ 3(1 + α(n− 1))(n/2− 1) ≥ n− 1 + α(n− 1)2

⇔ 3

2
(1 + α(n− 1))

n− 2

n− 1
≥ 1 + α(n− 1)

⇔ n− 2

n− 1
≥ 2

3

which is true for n ≥ 4. As the payoffs do not differ across players in each of the two

scenarios, welfare is higher under segregation than under integration given that n ≥ 4.

To see that other room configurations cannot improve welfare, start from full segre-

gation. Moving k players from room 1 to room 2 will lead to less information for the

remaining players in room 1. Suppose nevertheless that this move was welfare increasing.

Then players in the new room 2 must have better information than under segregation.

Note that by assumption the most informative strategy players could possibly adopt in

the new room is λh = 1 (λh = 1/2) and λl = 1/2 (λl = 1) for players with expected bias

bei = b (bei = b). Assume that this strategy is an equilibrium in the new room 2 (if it is

not, this step increases the welfare gain over segregation). But then it is clearly optimal

to move the remaining players from room 1 to room 2 as well (if this strategy remains an

equilibrium): This improves information for all players. But this would imply U int
i > U seg

i

which contradicts what we showed above.
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C. Empirical Work: Tables and Figures

Account Score
DavidCornDC 0.3515

RBReich 0.3672
ezraklein 0.3682
Lawrence 0.3763

ariannahuff 0.3951
chrislhayes 0.3968

mattyglesias 0.4062
mtaibbi 0.4228
nycjim 0.4244

NickKristof 0.4249
NateSilver538 0.4272
AnnCoulter 0.4316
ggreenwald 0.4373
jaketapper 0.4475

stephenfhayes 0.4576
MHarrisPerry 0.4576
KatrinaNation 0.4589

maddow 0.459
megynkelly 0.4624
jdickerson 0.4662

secupp 0.4764
greta 0.4779

EWErickson 0.4898
greggutfeld 0.4923

michellemalkin 0.4936
DLoesch 0.4962
glennbeck 0.4969

camanpour 0.5002
brithume 0.5051

AHMalcolm 0.5078
MajorCBS 0.5229

seanhannity 0.534
tavissmiley 0.5354
AnnCurry 0.536

AndreaTantaros 0.5384
andersoncooper 0.5667

DanaPerino 0.5695
krauthammer 0.5969

BretBaier 0.6036
FareedZakaria 0.6138
TuckerCarlson 0.6157

edhenry 0.6457
Judgenap 0.6645

kimguilfoyle 0.7134

Table 4: The scores of the twitter feeds of 40 prominent American political pundits. The
higher the score, the more Republican-leaning a pundit is.
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3336 0.0044 75.27 0.0000

scoreOriginalRel 0.2399 0.0103 23.19 0.0000

Table 5: The political scores of sender and receiver are correlated. The table shows the
results of estimating the equation receiver score = intercept + β sender score.
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