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rational and Pareto-efficient. We examine the optimal communication structure

and give sufficient conditions for when it is attainable through endogenous group

formation. Players may segregate inefficiently little because their actions have an

informational externality. Our framework can be extended to situations with un-

certainty, public information, and different network structures.
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Large parts of society are organized around the non-market exchange of information:

People gather around breakfast and dinner tables, in meeting rooms, committees, cafés

and bars, while keeping in touch with friends, co-workers and strangers through electronic

messaging and social media. But while people constantly seek out others’ views and

knowledge, they do not seek out a wide range of different viewpoints. Instead, they

tend to segregate into homogeneous communities and limit the number of views they are

exposed to.1

This poses a theoretical puzzle: If people put so much energy into seeking and ex-

changing information, why do they artificially limit both the diversity and the amount of

information available to themselves? Is it simply because of irrational biases or fear of

confrontation, or can there be informational reasons? It also raises the urgent question

of whether the resulting segregation in fact limits the spread of useful information and

thus hurts society, and whether policy should seek to influence who communicates with

whom.2

In this paper, we consider a society that faces two problems: Dispersion of information

and polarization of preferences. Dispersed information means that no single individual

knows enough about the world to make very successful choices. Polarized preferences

mean that even if everybody had perfect knowledge about the world, people would still

disagree on which action each person should take.3 We develop a general framework to

model how people rationally communicate within groups in the presence of information

dispersion and preference polarization, and how they sort into groups while anticipating

what communication within the groups will be like.

Our analysis shows that segregation into small, homogeneous groups can result from

rational choice and maximize the amount of information available to any single individual.

In fact, such segregation can be efficient and even Pareto-optimal for society. The optimal

amount of segregation increases in the degree to which preferences are polarized, relative

to the informational disagreement among individuals.

Why is that? Information dispersion and preference polarization work in opposite

directions: The former makes individuals curious about learning each other’s information

so they can make better choices; the latter gives them an incentive to misrepresent their

own information in order to influence others’ choices. If the polarization of preferences

increases in any given group, individuals become more and more interested in misleading

1See, for example, studies on segregation in blogs (Lawrence et al., 2010), on Facebook (Del Vicario
et al., 2016; Quattrociocchi et al., 2016), on Twitter (Barberá et al., 2015) and in online and offline
contexts in general (Gentzkow and Shapiro, 2011).

2Consider, for example, claims that echo chambers are “dangerous” (Grimes, 2017) and have “Balka-
nised society” (Itten, 2018), as well as played a role in populist insurgencies in Western democracies such
as the “Brexit” referendum (Chater, 2016) or the rise of Donald Trump (Hooton, 2016).

3We understand “polarization” as a measure of distribution, similar to Esteban and Ray (1994) and
the following literature. To avoid misunderstandings, we will use “polarization” only when talking about
exogenously given preferences – i.e. a primitive of our model – and not when referring to information or
beliefs.
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each other and truthful communication becomes harder – even though individuals are

still just as much interested in learning from one another. This means that in a highly

polarized society in which everybody tries to learn from everyone, very little truthful

communication may be possible because everyone also tries to mislead (almost) everyone.

If we are able to split this society into segregated groups, however, people within each one

of these groups may be a lot less polarized, so that for the purposes of their communication

the effects of information dispersion now dominate those of preference polarization. While

segregation into echo chambers limits the amount of potential communication, it makes

actual communication possible.

If it is left to individuals to decide with whom to communicate, an efficient allocation

may nevertheless be achievable and we give sufficient conditions for when that is the

case: If individuals care sufficiently about the decisions of others, or if the polarization

of preferences is very large or very small compared to the dispersion of information. But

people will also sometimes segregate too little compared to what a social planner would

choose. This is because choosing a group to communicate with has an informational

externality: A person may choose a group from which she can learn the most, without

fully internalizing how much others learn from her. If a society consists of two large groups

with different preferences (a situation that is often synonymous with “polarization”), it

can only ever be the case that in the best equilibrium, people either segregate optimally

or they segregate too little.

Our theory (and our title) should not be understood to mean that echo chambers are

unambiguously good for society. What we do in this paper is to identify and isolate a

mechanism by which they can be useful and increase welfare. This may, in many instances,

be outweighed by ways in which they can be detrimental, some of which we discuss in

section 6.4. Overall, our model calls for a nuanced view: Division into small, homogeneous

groups can facilitate honest debate and real mind changes just as it can narrow world

views and shut out crucial information. Which of these mechanisms dominates may not

be apparent from the simple fact that there are groups, and can only become clear when we

understand the structures of polarization and mistrust that underlie the sorting behavior.

We also suggest that the main business model of social networking sites could be

understood as providing the infrastructure for people to sort in the way that they want –

and not, in fact, simply to connect them, as is commonly assumed. We discuss this idea

in more detail in section 6.1.

This paper has three main contributions. First, in sections 1 to 3 we develop a tractable

framework to analyze strategic communication among n players, where everybody has

different information and different preferences and can talk and listen to everybody else.

The framework can accommodate endogenous choice of communication structures, dif-

ferent communication protocols, different types of uncertainty and other modifications.

Second, in section 4 we use this framework to develop the theory described in the previ-
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ous paragraphs. Finally, in sections 5 and 6 we show how our model extends to various

contexts, and we discuss how it can be applied to real-world situations.

An introduction to our modeling framework We analyze a model in which a number

of individuals face aggregate uncertainty and have heterogeneous preferences. These in-

dividuals sort into groups, communicate within these groups, and finally each chooses an

action. The state of the world and each person’s preference are real numbers; a person’s

ideal point is simply the sum of the state of the world and her preference. Each person

wants all players’ actions, including her own, to be as close as possible to her own ideal

point, and her payoff is concave in the distance between anyone’s action and her ideal

point. People may therefore take different actions based on differences in information and

in preferences. Differences in either dimension are sufficient for disagreement, i.e. people

would choose different actions even if they all had the same information but different

preferences or vice versa.

We assume that people’s preferences are common knowledge, though we relax this

assumption in an extension. Before choosing whether (and what) to communicate, each

person privately receives a binary signal about the state of the world. We make the

simplifying assumption that each person’s signal contains information about the state

of the world, but no information about the information of others. Intuitively, different

people observe different aspects of the world, and what one person observes does not tell

her anything about what any other person knows. This assumption allows us to develop

a simpler and more tractable analysis than richer models in the literature.4

We assume that “cheap talk” communication takes place in disjoint “rooms”, where

each statement by an individual can be heard by anyone else within the room, but not by

people in other rooms. If a person now finds herself in a room with a mixed group of others,

she faces a trade-off between wanting to correctly inform those who have preferences close

to her own (as that will bring their action closer to her own ideal point), and wanting to

mislead those who have very different preferences. If most of her audience has a much

lower preference parameter than her, for example, she would want to make them believe

that her signal says that the state of the world is a high number, to counteract the fact

that her audience will always choose an action that she deems too low.

We show that the question of who tells the truth and who babbles in equilibrium in any

given room has a simple solution and only depends on the difference between a person’s

preference and the average preference of her audience (theorem 1). This allows us to easily

compute how much communication can take place in the most informative equilibrium

in any room. Following the backwards-induction logic, we can then analyze how a social

planner would choose to allocate people to rooms, and how people can allocate to rooms

4In the supplementary material, we show that our main arguments are robust to using various different
assumptions and modeling techniques.
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in equilibrium.5

We show that the most informative equilibrium in any room is always in pure strategies,

and that hence we can count information in discrete “pieces”: Receiving a signal, or

learning another player’s signal through communication, are each equivalent to getting one

“piece” of information (corresponding to 1 bit in Shannon entropy). Despite the fact that

people face aggregate uncertainty, have different preferences and have concave preferences

about their own actions and the actions of others, we can show that all payoffs (and hence

also welfare) can simply be expressed in the integer amount of pieces of information that

each player has after room choice and communication have taken place (proposition 1).

We consider two different types of preference polarization. First, we analyze a society

that consists of people with two types of preferences. In section 4.2, we completely

characterize the optimal room allocation for all possible group sizes and magnitudes of

polarization in this case. We show that either the welfare-optimum is an equilibrium of

the room-choice game, or people segregate too little in the welfare-optimal equilibrium.

In section 4.3 we consider a more general specification of polarization as “clustering”

around certain values. We introduce a parameterization of polarization in such a model

and show the following result: If the relative polarization of preferences is large, full seg-

regation by preferences is always welfare-optimal and an equilibrium, whereas integration

is optimal and an equilibrium for low polarization (theorem 3).

Finally, our analysis allows us to disentangle the welfare effects of polarization and seg-

regation. An increase in a society’s polarization leads to an increased desire for segregation

as well as a welfare loss in equilibrium. An observer may hence be tempted to conclude

that segregation itself has caused the welfare loss, but we can show that the opposite is

the case: Polarization lowers welfare (proposition 2), but segregation actually mitigates

the corrosive effects of polarization. Not allowing people to segregate in the presence of

polarization would lower welfare. We can hence see segregation into echo chambers as not

just an individually rational action, but as society’s decentralized countermeasure against

the welfare losses caused by polarized preferences.

In section 5, we show that our model remains tractable if we consider several extensions

to situations (i) in which there is public as well as private information, (ii) in which pref-

erences are uncertain, and (iii) in which people can unilaterally choose whom to “follow”,

rather than sorting into rooms – similar to what happens on social media sites.

Relation to other research Our work is related to several methodological approaches,

and ties into a wider-ranging literature on segregation, isolation and echo chambers.

As the basis of our analysis of communication, we develop a tractable model of many-

to-many cheap-talk. Our geometrical solution avoids much of the exponential complexity

5Following the usual convention in the literature on strategic communication, we only consider the
most informative equilibrium in each room and ignore less informative babbling equilibria.
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that usually appears in models with multiple senders or receivers.6

Galeotti et al. (2013) analyze 1-to-1 communication among many agents in networks.

Agents face a decision problem similar to ours, but since each agent’s signal is informative

about each other agent’s signal, equilibria are not well-ordered in the way that our lemma

1 establishes. Even when mixed equilibria are excluded by assumption, the analysis does

not consider the type of “room choice” question of our paper (and such an analysis would

not be possible in this framework).

The model by Galeotti et al. (2013) has been used in the political science literature

to study the formation of alliances (Penn, 2016), the existence and stability of factions

within parties (Dewan and Squintani, 2016), and the effect of decision making authority

on deliberation (Patty, 2022). The latter study is closest to our paper, as Patty also

considers communication within a room. However, the room structure is restricted and

strategic room choice is not analyzed – a simpler and more general analysis of Patty’s

questions might be possible when using our framework.

Hagenbach and Koessler (2010) consider 1-to-1 communication among players in a

network who then play a type of coordination game. As in our model, each player’s signal

is uninformative about any other’s signal. Mixed equilibria are considered too complex

and excluded from the analysis (cf. their footnote 4), whereas in our framework we can

consider all mixed equilibria but show that they are strictly less informative than the

pure equilibria we focus on. Their theorem 1 proves existence of a network in which each

player sends truthful messages to a set of receivers whose average bias is close enough to

her own. While this may look similar to our extension in section 5.3 (or even our theorem

1), it results from the wish to coordinate the actions of various receivers, unlike in our

framework.

In contrast to these and other studies, our framework also allows us to measure the

“pieces of information” that each players has and show that these are a sufficient statistic

for payoff and welfare (proposition 1). This, together with the ability to strictly order

equilibria by informativeness, then permits the analysis of room choice both from the

perspective of the individual and the social planner, which we see as our main economic

contribution.

The welfare analysis of room choice in our model can also be seen as an information

design problem: How can an information designer induce information exchange between

several agents if commitment to a disclosure rule (as in the literature on Bayesian Persua-

sion) is not available? The right construction of mixed groups can induce truth-telling.

Rooms endogenously create costs to lying in our model, which is the main instrument of

discipline in Kartik 2009. They induce truth-telling even though different senders’ infor-

6Some of our main arguments are not dependent on this particular setup and can be derived in a
more classical cheap-talk setting akin to Crawford and Sobel (1982), as we show in the supplementary
material.
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mation is orthogonal to each other and there hence exists no mechanism (as in e.g. Krishna

and Morgan 2001) to elicit information by playing senders off against each other. Some

of the results of our paper hence allow us to analyze “communication design” without

commitment, and perhaps even without a designer.

In section 5.2, we show that uncertainty about preferences has a corrosive effect on

truth-telling. In contrast to earlier works such as Morgan and Stocken (2003), we allow

for uncertainty of the sign as well as the size of the bias, which may be distributed contin-

uously or discretely. Uncertainty about the bias can help or hurt information transmission

(and does not necessarily help as in Li and Madarász, 2008). Our results and methods

generalize without loss to large groups of players and general distributions of biases. To

our knowledge, we are the first to generally analyze how bias uncertainty influences whom

people want to associate and communicate with, and how it increases the appeal and the

usefulness of segregation.

The debate about echo chambers has been given urgency by several studies and popular

treatises on how the internet changes the way societies debate. Sunstein (2001, 2017)

prominently makes the case that the internet has been increasing ideological segregation

and that this endangers democracy. Gentzkow and Shapiro (2011) point out that the

segregation of “offline” interactions is larger than that of “online” interactions. But while

such offline segregation can happen simply because we live close to people who are like

us in many socio-economic aspects, segregation on the internet is driven more directly by

choice. Our model allows us to analyze the informational effects of any kind of segregation

or integration, as well as predicting which communication structures arise from individual

optimizing behavior, and whether they are socially optimal.

Several recent papers also mention the idea of echo chambers while focusing on ex-

ogenous news sources (or algorithm designers who do not care about the informational

content of shared messages), e.g. Che and Mierendorff (2019); Martinez and Tenev (2020);

Acemoglu et al. (2021). In our paper, the interplay between strategic senders and receivers

is at the heart of our analysis.

Even where echo chambers would have negative consequences that are not in our

model, the effects that we describe would have to be reckoned with, and a nuanced

discussion of how much segregation is optimal in debate is necessary. Most importantly,

we argue that those who see ideological segregation as the ruin of societies are focusing

on a symptom, not the cause. Polarization of preferences and mutual mistrust are doing

the real damage; informational segregation can be a rational behavior that mitigates the

harm they do.
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1. Model

There is an unknown state of the world θ =
∑n

i=1 θi. Each θi is independently drawn

to be 0 or 1 with equal probabilities, so that θ is binomially distributed on {0, 1, . . . , n}.
n individuals each make an observation about the state. In particular, individual i re-

ceives a private signal σi ∈
{
σl, σh

}
of accuracy p about θi, i.e. Pr

(
σi = σh|θi = 1

)
=

Pr
(
σi = σl|θi = 0

)
= p > 1/2. Before observing his signal, a player can access one of n

“rooms”. There are no costs to entering a room, and rooms have no capacity constraints

– but each player can only be in exactly one room. After observing his signal, a player

sends a cheap-talk message mi ∈ {ml,mh} that is received by all players in the same

room.7 Finally, each player takes an action ai.

The payoff of player i is

ui(a, bi, θ) = −(ai − bi − θ)2 − α
∑
j ̸=i

(aj − bi − θ)2

= −

(
ai − bi −

n∑
k=1

θk

)2

− α
∑
j ̸=i

(
aj − bi −

n∑
k=1

θk

)2

(1)

where a denotes the vector of actions of all players and bi ∈ R is a commonly known

“bias” of player i. That is, actions of all players affect i’s payoff, and i would like that all

players choose the action bi+θ. We can hence think of bi as the preferences of the players,

whereas θi is the aspect of the world that player i has information about. The parameter

α measures the relative weight players assign to other players’ behavior – in other words,

the sensitivity of i’s payoff to the actions of other player. If α = 0, i only cares about his

own decision; if α = 1 then every other player’s decision is just as important to i as his

own decision. Players maximize their expected payoff.

The timing of the game is:

1. All biases bi become common knowledge.

2. Players simultaneously decide which room to enter.8

3. Players privately observe their signals σi. Players simultaneously send messages mi

that are observable by everyone in the same room Ri.

4. Players simultaneously take actions ai; payoffs are realized.

7Our main analysis considers binary signals and messages, but the supplementary material shows that
our main results are robust to the introduction of an arbitrary finite number of states and signals.

8As we are only interested in equilibrium, this is equivalent to imagining a stage in which players can
enter rooms, observe the composition of all rooms and then switch rooms if they like. This stage would
end when no player wants to switch anymore. In this interpretation, the assumption that every player
can see the composition of any room is for clarity of exposition, but for equilibrium analysis it is without
loss of generality since every player will correctly anticipate the room choices of others in equilibrium and
biases are common knowledge.
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More formally, let BRi
be the vector of biases in room Ri and denote by B ∈ ℜ∪ · · · ∪ℜn

the set of all such bias vectors. A messaging strategy in stage 2 is then a (potentially

stochastic) map mi : B × {σl, σh} → ∆
(
{ml,mh}

)
.9 Stage 3 actions assign to each

combination of own signal σi and messages sent in Ri an action in ℜ.10

We analyze the model by backwards induction: First we characterize the optimal choice

of action given messages, then the optimal choice of message given a room allocation, and

then we analyze the game in which players choose which room to enter. The solution

concept used throughout is Perfect Bayesian Equilibrium.11

2. Equilibrium Behavior Within a Room

2.1. Choice of Action

We can immediately see that only the first part of expression 1 matters for determining

i’s optimal action a∗i . The first-order condition yields

a∗i = bi + E[θ|mRi
, σi] = bi +

n∑
j=1

E[θj|mRi
, σi], (2)

where mRi
denotes the profile of messages sent in room Ri. In words, the optimal action

is simply i’s bias plus his expectation of the state, conditional on his own signal and on

the messages he has received.

In the following, we will denote by µij = Ei[θj|mRi
, σi] i’s expectation about θj, so

that expression (2) becomes a∗i = bi +
∑n

j=1 µij.

2.2. Choice of Message

Now that we have established each agent’s optimal action choice given expectations

(µij)
n
j=1, we can consider the optimal choice of message. For this, we focus on a sin-

gle room, and consider the equilibria of the cheap talk game in this room. This means

that when we speak of “equilibrium” in this section, we mean the equilibrium in a specific

room (with a given set of members with given biases), and not the overall equilibrium of

the game. We can do this because once players have sorted into rooms, the messages in

other rooms are unobservable and the actions of players in other rooms are irrelevant to

a player’s optimization problem. Hence, an equilibrium of the subgame after room choice

can be disassembled into one equilibrium of the cheap talk game for each room.

9This means that mixing is allowed, but as we will show below there exists a more informative pure-
strategy equilibrium for every mixed equilibrium.

10In principle, strategies could also depend on the composition of other rooms. However, ignoring
this possibility is without loss of generality as a player cannot gain from such a dependence (given that
messages are not payoff relevant).

11For the equilibria that we are interested in, all messages occur in equilibrium and there is no hidden
information at the time that people choose rooms, so that our results are insensitive to assumptions about
off-path beliefs.
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Definition 1. We call a messaging strategy mi ...

• babbling if mi is independent of i’s observed signal σi and therefore nobody learns

anything payoff relevant from mi.

• truthful if mi(σ
l) = ml and mi(σ

h) = mh.

• lying if mi(σ
h) = ml or mi(σ

l) = mh.

• pure if mi is either babbling or truthful, so that mi is either perfectly uninformative

or perfectly informative about σi.

• mixed if for some signal σk, k ∈ {l, h}, both messages are sent in equilibrium with

positive probability and the strategy is not babbling.

The cheap talk game within a room can – as usual – have several equilibria. For

each player i, there always exists an equilibrium in which i babbles. (Consequently, there

also always exists an equilibrium in which all players babble.) In line with the cheap

talk literature, we will focus on the most informative equilibrium.12 The following lemma

implies that the most informative equilibrium is in pure strategies.

Lemma 1. Let (m1, . . . ,mn) be equilibrium strategies. If mi is a mixed strategy, then

there also exists an equilibrium with strategies (mt
i,m−i), where m

t
i is the truthful strategy.

(Proof on page 29.)

What is the intuition for this result? Imagine an equilibrium in which player i mixes

between messages after observing signal σh. That is, i is indifferent between sending a

high message that induces high actions by the other players in his room and a low message

that induces lower actions by the players in his room. This means that the actions induced

by ml are somewhat too low from i’s point of view and the actions induced by mh are

somewhat too high. Note that i will always send the low message in case he observes a

low signal in such an equilibrium because the actions i would like the other players to

take are increasing in his signal. Consequently, a high message perfectly reveals i’s high

signal. Now consider switching to an equilibrium in which i uses the truthful strategy.

When i now observes a high signal, sending the high message will lead to exactly the same

actions by the other players as in the original equilibrium. However, sending a low message

will lead to a lower expectation of the other players than in the original equilibrium and

therefore to lower actions by the other players. Player i will then strictly prefer the high

message as these lower actions are too low (given that i was indifferent in the original

equilibrium).

12The concept of “most informative” equilibrium is not necessarily well defined in multi-sender cheap
talk games. However, the following paragraphs will make clear that this concept is straightforward in our
model.
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The main implication of lemma 1 is that the most informative equilibrium is always

in pure strategies: Starting from any mixed equilibrium we can switch the mixing players

one by one to truthful strategies and the resulting strategy profile remains an equilibrium.

This new equilibrium is more informative as the truthful strategy is most informative (in

the Blackwell sense) and therefore best for the receivers.

Corollary 1. The most informative equilibrium in a room is always in pure strategies.

We can now characterize the most informative equilibrium. Intuitively, we might

expect that the distance of bi to the biases of the other players is crucial for i’s incentive to

tell the truth, since i becomes more interested in misleading the other players if their biases

differ by a lot. We formalize this intuition and specify the most informative equilibrium

in the following result, which is illustrated by figure 1:

Theorem 1. Let b =
∑

k∈R bk
nR

be the mean bias of players in room R. In the most informa-

tive equilibrium in this room, a player i tells the truth if and only if

bi ∈
[
b− nR − 1

nR

(p− 1

2
), b+

nR − 1

nR

(p− 1

2
)

]
and babbles otherwise. (Proof on page 30.)

The size of the truth-telling interval increases in both nR, the number of people in

the room, and p, the precision of individual signals. The increase in nR can be seen as a

correction term: What really matters for the motivation of a player is his distance from

the average bias of the other players in the room. Hence, if we write a symmetric interval

around b (which includes bi), we have to add this correction.13 When p, the precision of

signals, is higher, each truthful signal causes a greater change in the actions of others.

People communicate truthfully if they are disciplined by the danger of influencing others’

actions too much by lying. Hence, if p is higher, this disciplining force is stronger and a

player can be further away from the average bias of others and still tell the truth.

3. Room Choice

We can now analyze room choice, under the assumption that the most informative equi-

librium will be played in any room. We will first derive some results about the welfare-

optimal room allocation, and then analyze under which conditions this optimal room

allocation is in fact an equilibrium.

13Intuitively, one could also think that the average room bias “stabilizes” for larger nR, so that a player
can be further away from the average room bias and have the same distance from the average bias of
other players in the room.
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bi

b1 b2 b3 b4 b5

bb̄− nR−1
nR

(p− 1
2 ) b̄+ nR−1

nR
(p− 1

2 )

Figure 1: Finding the most informative equilibrium in a room consisting of players 1 to 5.
We find the average bias and construct a symmetric interval around it. Players 1 and 5
babble in the most informative equilibrium, since their biases are too far from b. Players
2, 3 and 4 tell the truth.

Given the expression for individual payoff (1), overall welfare in the model is given by

W (a, b, θ) =
n∑

i=1

ui(a, bi, θ) = −
n∑

i=1

(
ai − bi −

n∑
k=1

θk

)2

− α
n∑

i=1

∑
j ̸=i

(
aj − bi −

n∑
k=1

θk

)2

.

This expression, of course, is not yet very helpful in trying to compare different room allo-

cations. However, we can show that in our model, welfare can simply be expressed in terms

of the aggregate amount of information that is held by all players after communication

has taken place.

This is because, as payoffs are quadratic, we can additively separate a player’s payoff

into (i) losses through preference differences and (ii) losses from variance due to lack of

information. In an equilibrium of the messaging game, the former losses are unavoidable,

but the latter can be mitigated by increasing the flow of information between players. We

can measure this flow simply by counting the pieces of information that each player has

when making their decision.

Consider the information that is available to a single player. A player always receives

his own signal σi. We can call this one piece of information. Assume that i also re-

ceives truthful signals from two other players; then we can say that i has three pieces of

information about θ. Let ζi ∈ {1, 2, . . . , n} be the number of pieces of information avail-

able to player i which are either his own signal or truthful messages from other players.

Given that each σj has two possible values (high or low), ζi in fact measures player i’s

information in bits, the unit of information. The following result shows that all welfare

comparisons reduce to informational accounting in bits:

Proposition 1. If the most informative equilibrium is played within all rooms,

1. player i’s payoff is given by

Ui = −α
∑
j ̸=i

{(bj − bi)
2}−1/4 [n+ α(n− 1)n]+(1/4−p(1−p))

[
ζi + α

∑
j ̸=i

ζj

]
(3)

which is a linear and increasing function of ζi + α
∑

j ̸=i ζj.
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2. welfare is given by

W = −α

n∑
i=1

∑
j ̸=i

{(bj − bi)
2} − 1

4
n2 [1 + α(n− 1)] + (p− 1

2
)2(1 + α(n− 1))

∑
i

ζi

which is a linear and increasing function of
∑

i ζi.

(Proof on page 31.)

In each RHS term, the first part describes the losses that occur because of payoff dif-

ferences, the second part describes the (hypothetical) loss that would occur if no player

had any information, and the third part describes the “gains” (compared to this hypothet-

ical loss) from the information that becomes available to the agents through their own

signals and within-room communication. The first and second part do not depend on

room allocations (and hence are simple functions of model parameters), whereas the third

gives us the result that individual payoffs and welfare are linear functions of the number

of pieces information that are available to each player.

This redefines i’s choice of room in purely informational terms: When choosing a

room, i wishes to maximize a weighted sum of his own information (after communication)

and that of other players. When he considers switching from, say, room RA to RB, i will

consider how much more he can learn in room RB, as well as how much more or less

the other people in both rooms will learn after his switch. How exactly i is willing to

trade off these informational effects against each other (and hence the size of a player’s

“informational externality”) depends on α.

If α = 1, there is no informational externality and the room choice that is optimal for

a given player also maximizes welfare. This leads to the following corollary:

Corollary 2. If α = 1, the welfare-optimal room allocation is also an equilibrium of the

room choice game.

Proposition 1 means that we can quickly compare the welfare of any two room al-

locations. Consider, for example, the room allocation in figure 1. Having everybody in

the same room generates 17 pieces of information: 3 players have 3 pieces of information

each, while two players (those who babble) have 4 pieces each. Would it be possible to

improve on this allocation? We can immediately see that this cannot be achieved by

splitting players up into two rooms with 3 and 2 players, respectively: Even if everybody

in these rooms was telling the truth, only 32 + 22 = 13 pieces of information would be

produced. The same is true for splitting them into a higher number of even smaller rooms.

But even if we somehow could get 4 people in one room to tell the truth by putting one

of the players into a separate room, the total number of pieces of information would be

42 + 1 = 17 – the same as with full integration. Hence the room allocation shown in the

figure is welfare-optimal.
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Of course, we may often not be able to make such quick deductions and might have

to consider many possible room allocations before concluding which one is optimal. This

problem gets more complex as n grows, since the number of possible partitions of a set

(given by the Bell sequence) grows quite rapidly. However, we derive general results on

optimal and equilibrium room allocations in the next section.

4. Polarization and Segregation

We have now shown that the messaging problem inside each room has a simple geometrical

interpretation, and that the room choice game reduces to a problem in which all players

wish to minimize a weighted sum of their own uncertainty and that of the other players.

In this section, we will use these results to draw a connection between the polarization of

players’ preferences, and the question of which room allocations are optimal, and which

allocations can be achieved in equilibrium.

We will begin by giving a simple, non-technical example in which segregation is both

efficient and an equilibrium. We then generalize the intuitive insights from this example to

all possible models in which there are two bias types. Some insights from this model can be

generalized again to all conceivable generic bias configurations with an arbitrary number

of biases and players, and our framework can be used to address specific bias distributions

within this general space. Finally, we show that the welfare effects of polarization work

despite segregation, not through segregation.

4.1. A Non-Technical Example

Consider a set of biases as in panel (i) of figure 2: A group of 6 players, 3 of whom

have relatively small biases, while the other 3 have relatively large biases. If all players

are within the same room (panel i), the truth-telling interval within this fully integrated

room does not cover any of the players’ biases, which means that in any equilibrium none

of them reveals any information. The number of pieces of information generated is 6.

Suppose the players segregate by bias type into two separate rooms – see panel (ii).

The truth-telling interval in both rooms covers all the players in the respective rooms,

which means that all players reveal their information truthfully. In each room, 9 pieces

of information are generated, which means that overall this allocation generates 18 pieces

of information.

Is this segregation an equilibrium? We can consider the most profitable deviation of

player 3 (which is symmetric to the most profitable deviation of player 4 and better than

the best deviations of any other players) – see panel (iii). If player 3 moves into the other

room, he will move the average in this room so that players 5 and 6 no longer tell the

truth in any equilibrium. He himself also does not tell the truth anymore, so that his move

completely deprives society of the information of players 3, 5 and 6. (The lengthening of

the truth-telling interval that results from 3’s move is not enough to compensate for the
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change in average bias.) The resulting room allocation generates 22+4+3 = 11 pieces of

information, which clearly leads to lower welfare. It is also inferior for player 3, since he

now has 2 pieces of information (his own and the message from player 4) instead of 3, so

that his payoff decreases. Hence this deviation is not optimal for player 3, and no player

has a profitable deviation from two segregated rooms – which means that this allocation

is not only welfare-optimal, but also an equilibrium.

(i)

bi

1 2 3 4 5 6

b̄

Room

(ii)

bi

1 2 3 4 5 6

b̄A b̄B

Room A Room B

(iii)

bi

1 2 3 4 5 6

b̄A b̄B

Room A Room B

Figure 2: Truth-telling intervals for (i) the fully integrated room, (ii) two segregated
rooms, (iii) player 3’s best deviation from the segregated room.

4.2. Bipolar Polarization

We now focus on the case where there are two bias groups, i.e. bi ∈ {0, b} for some

b > 0, where n0 individuals have bias 0 and nb (= n − n0) have bias b. This “bipolar

polarization” is often used synonymously with the word polarization. Our results allow us

to fully characterize, for the full parameter space: (i) the welfare-optimal room allocation,

(ii) whether it is an equilibrium and (iii) if it is not an equilibrium, what the welfare-

maximizing equilibrium looks like. This full result is given in theorem 2 below. Since

this result has to consider several case-distinctions and is hence somewhat technical, we

will first summarize the structure of optimal and equilibrium room allocations with two

general results. A step-by-step discussion and derivation of the results is in appendix B.

The first result is that segregation is optimal and an equilibrium if polarization is high

relative to differences in information (i.e. if b is large), and full integration is optimal and

an equilibrium if polarization is low (if b is sufficiently low):
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Result 1. If all bi ∈ {0, b} and b is very small (large), the welfare-optimal room allocation

is that all players are in the same room (are fully segregated by types); this optimal room

allocation is also an equilibrium of the room-choice game.

We can intuitively consider the two cases. In the first case, all players will send truthful

messages if they are all in the same room, since if b = nbb
n

< n−1
n
(2p−1) then the condition

of theorem 1 is trivially fulfilled. Clearly, if b is small enough for this inequality to hold, a

fully integrated room will be both welfare-maximizing and an equilibrium room allocation.

At the other extreme, consider the case where the presence of one player of bias b in a

room containing all n0 players with bias 0 will lead to babbling by all players in the room.

This is the case if and only if b > n0(p− 1
2
). In this case (and if the analogous condition

for nb is fulfilled), any room containing players of both bias types will lead to babbling.

Segregating the two groups is consequently both welfare optimal and an equilibrium.

For intermediate levels of polarization, the welfare optimal room allocation need not

be an equilibrium. Perhaps counterintuitively, this will only occur because in the welfare-

optimal equilibrium, the groups do not segregate enough:

Result 2. If all bi ∈ {0, b} and the welfare-optimal room allocation is not an equilibrium,

then the welfare-optimal equilibrium allocation involves too little segregation, i.e. welfare

could be improved by moving players from mixed rooms into rooms that contain only their

own bias type.

Intuitively, there can be two types of informational externalities that players may

ignore (if α is sufficiently small) and which cause them to segregate too little, compared

to how a social planner would allocate them to rooms. To explain these externalities, we

will first introduce the following theorem, which exhaustively considers all possible cases:

n−1
n/2

n/2

full integration

welfare optimal

and equilibrium

too little
segregation

in equilibrium

full segregation

welfare optimal

and equilibrium
2

n−2

b
p−1/2

α

Figure 3: Welfare and equilibria for equally sized bias groups. The horizontal axis de-
scribes how polarized preferences are, relative to the difference in information between
players.

Theorem 2. Let all bi ∈ {0, b} and n0 ≥ nb (where the latter assumption is without loss

of generality).

(Welfare-optimality) The welfare maximizing room allocation is as follows:
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1. For b/(p− 1/2) ≤ (n− 1)/n0, all players are in one room (where their messages are

truthtelling).

2. For (n− 1)/n0 < b/(p− 1/2) ≤ (n− 1)/nb, let nm0 = ⌊(nb − 1)/(b/(p− 1/2)− 1)⌋.
Then,

(a) it is optimal to have all players in one room (where those with bi = 0 are

truthtelling and those with bi = b are babbling) if (nb + nm0)
2 + (n0 − nm0)

2 ≤
n0(n0 + nb) + nb and nm0 ≥ nb,

(b) it is optimal to have one room with n0 − nm0 players with bi = 0 and an-

other room that contains all other players (in which everyone is truthtelling)

otherwise.

3. For b/(p− 1/2) > (n− 1)/nb, let nmb = ⌊(n0 − 1)/(b/(p− 1/2)− 1)⌋. Then,

(a) it is optimal to have one room with nb − nmb players with bi = b and another

room with all other players if n0(n0 + nmb) + nmb + (nb − nmb)
2 ≥ n2

0 + n2
b

(b) full segregation is optimal otherwise.

(Equilibrium) The welfare optimal room allocation is an equilibrium in cases (1), (2a)

and (3a). The welfare optimal room allocation is also an equilibrium

• in case (2b) if

α ≥ 2nm0 − n0 + 1

n0 − 2nm0 − 1 + n2
b + nb(nm0 − 1)

• in case (3b) if α ≥ (1 + n0 − nb)/(nb − 1).

If the welfare optimal room allocation is not an equilibrium, then the welfare optimal

equilibrium features too little segregation: In case (2b), the equilibrium has all players

in a single room while the welfare optimal allocation has two rooms (only one of which

contains both types of players). In case (3b), full segregation is welfare-optimal but not an

equilibrium. (Proofs and a step-by-step derivation of the results in part B of the appendix.)

Figures 3 and 4 depict these results and the exact relationship between welfare-

optimality and equilibrium for equally-sized bias groups and one case of different-sized

bias groups.

This result shows that information externalities can take two possible forms:

• In case (2b), a player destroys information in the room that she enters. The welfare-

optimum for this case is basically achieved by starting with one fully integrated room

(in which the b-types are in the minority and all babble) and removing 0-types to

a separate room until the mixed room is balanced – i.e. there is no longer a large

majority of 0-types that would make it impossible for b-types to tell the truth in
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equilibrium. But this means that the 0-types who are in a small room by themselves

could deviate and massively improve their own information by moving to the large

mixed room, which would cause all the b-types there to babble but would still be

more informative to the switching 0-type than staying in the separate room.

• In case (3b), a player destroys information in the room that she leaves (by depriving

those who stay behind of the information she would otherwise have communicated

to them). Full segregation by types would be welfare-optimal in this case, but b-

types can again improve their own information by joining the other room. They

will not do so to an extent that would cause the 0-types there to babble. But any

b-type who joins the room populated mainly by 0-types will babble there, whereas

she would have truthfully revealed her information in a room populated only by

b-types.

One implication of theorem 2 is that no player assigned to a mixed room in the welfare

optimal room allocation has an incentive to leave this mixed room in favor of a less mixed

room. This is due to the fact that there is at most one mixed room in the welfare optimal

room allocation and this mixed room will contain more truthtelling players than any other

room.

As figure 4 shows, whether the welfare optimum is an equilibrium can be non-monotonic

in b. This is because in the parameter range between cases (2b) and (3b), it is not pos-

sible to “balance” the fully integrated room by removing b-types, but a fully segregated

room would be worse than a fully integrated room in which only one type communicates

informatively.

1.6 21.75 5

2/3

1/6

full integration

welfare optimal

and equilibrium

(truthtelling) too little
segregation

in equilibrium

two rooms

(one mixed)

welfare optimal

and equilibrium

full integration

(bi = b babble)

welfare optimal

and equilibrium
too little

segregation

in equilibrium

full segregation
welfare optimal
and equilibrium

b
p−1/2

α

Figure 4: Welfare and equilibria when n0 = 5 > 4 = nb. (not to scale)

4.3. When is Segregation Optimal?

The previous section has shown that integration and segregation are, respectively, optimal

if preferences are little polarized or very polarized. We can generalize this insight to

arbitrary bias configurations with arbitrarily many biases. Let B = ⟨b1, b2, . . . , bn⟩ be a
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η

0

Full integration
optimal and
equilibrium

Full segregation
optimal and
equilibrium

Figure 5: Welfare-optimal allocations that are also equilibria for large and small η.

bias configuration. (Note that this is not a set, as several people can have the same bias.)

Assume that B is generic in the sense that no bias is the average of any set of other

biases (except in cases where several people have the same bias).14 Now we can consider

an alternative bias configuration Bη = ⟨ηb1, ηb2, . . . , ηbn⟩, with η ∈ (0,∞). Intuitively, η

parameterizes the polarization of preferences compared to the differences in information

between players: A larger η can both mean an increase in preference polarization or a

decrease in information dispersion.15 Then the following is true:

Theorem 3. (i) If η is sufficiently close to 0, full integration is welfare-optimal and a

room-choice equilibrium for bias configuration Bη.

(ii) If η is sufficiently large, full segregation by bias types is generically welfare-optimal

and a room-choice equilibrium for bias configuration Bη. (Proof on page 33.)

Figure 5 summarizes the result. We can intuitively explain it in the following way:

If biases are clustered very closely relative to how different the players’ information is,

having all players in one room would result in universal truth-telling. This cannot be

improved upon in welfare terms, and it is also an equilibrium since any player would lose

by leaving the fully integrated room.

On the opposite end of the spectrum, we consider the case where biases are clustered

very widely compared to differences in information, and we do not assume special, non-

generic properties such as that one bias is the exact average of two other biases. Then

truth-telling will be impossible in any room that contains two or more players with dif-

ferent biases. Hence there exists no room allocation that can improve welfare compared

to full segregation by bias types. Similarly, no player has an incentive to deviate from full

segregation, since such a deviation cannot provide more information to the player himself

or any other player.

To derive results for the area between the two cases (i.e. the center of figure 5), one

would need to impose more structure, since the set of generic bias configurations is large

and unordered – for example, welfare-best equilibria that are not the welfare-optimum

14More precisely, the assumption is that bi ̸=
∑

bj∈B\{bi}
ñbj∑
k ñbk

∗ bj for any vector of ñbj ∈
{0, 1, . . . , nbj} where nbj is the number of players with bias bj .

15One way to think about η is as the polarization measure proposed by Esteban and Ray (1994)
(theorem 1) with an appropriate scaling parameter.
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may involve too much as well as too little segregation.16 We give an example for a case

in which there is too much segregation in equilibrium in the supplementary material.

Our framework, however, can be used for the analysis of specific types of bias configu-

rations that may be of theoretical or applied interest. In the supplementary material, we

analyze two specific cases17: First, a world in which biases are uniformly distributed on

an interval of the real line, so that there is no “massing” of biases anywhere – one might

think of such a society as diverse but not polarized. In that case, (almost) full integration

is welfare optimal and full integration is also an equilibrium.

In a second special case, biases are tightly clustered around a central value in a“single-

peaked” configuration. We could think of this as an “anti-polarized” society in which pref-

erences become monotonically less likely the further they are from the population average.

In this case, full integration can be welfare-optimal (and is then also an equilibrium), but

only if the concentration of biases around the central mode is strong enough.

4.4. Polarization Destroys Welfare

We have argued that segregation is a rational and Pareto-optimal response to polarization.

This does not mean that polarization in itself increases welfare – quite the opposite. If

we return to the η-parameterization under which we derived our theorem 3, we can show

that both welfare and the amount of communicated information are weakly decreasing in

η, i.e. our measure of polarization.

Proposition 2. Denote expected welfare in the welfare optimal room assignment with bias

configuration Bη by W (η) and the total number of pieces of information in the welfare

optimal room assignment by Z(η). Z(η) and W (η) are both decreasing in η. (Proof on

page 34.)

To illustrate this result, consider the following thought experiment: Starting with any

bias configuration and any room allocation, we increase η. This will weakly decrease

communication in any room, which harms welfare. Allowing for further segregation may

restore some communication, which reduces the harm – but not completely.

We should hence be very precise about the mechanism by which higher polarization de-

creases welfare. It is not through segregation, even though higher polarization causes more

segregation, which ultimately causes less information to be exchanged. Saying “segrega-

tion lowers welfare” would ignore the crucial intermediate step, which is that polarization

in itself causes an informational breakdown. In fact, segregationmitigates this breakdown,

without of course being able to restore communication between people that are now in

separate rooms.

16In fact, the notions of “too much” or “too little” segregation may not be well-defined if there are
arbitrarily many bias groups.

17We have kept these cases, as well as the example from the preceding paragraph, in the supplementary
material as we think of them as applications of our framework, and not as major insights themselves.
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One could think of echo chambers as society’s (decentralized) defense mechanism

against polarization. Like fever in a human body, segregation occurs as the effect of an

underlying problem, and its presence hence indicates that polarization is at problematic

levels. Echo chambers, and segregation more generally, are a symptom of polarization.

And just like artificially lowering fever, treating the symptom without addressing the

cause can in fact exacerbate the situation. Reducing polarization will weakly improve

welfare; reducing segregation may not.

5. Extensions: Uncertainty, Public Information, and Follower Networks

This section considers three extensions to our model, which show the general applicability

of our framework and may be useful for specific applications. We describe each extension

and present the results. All derivations and further details are, however, relegated to the

supplementary material.

5.1. Public Information

Besides the private information they get from σi, players may also have access to common,

public information that is relevant for their decision. Assume that instead of our usual

assumption on θ, it was now θ = τθ0 + (1 − τ)
∑n

k=1 θi. In addition to the private

signals σi that give player i information about θi, there is now also a public signal of

accuracy p0 that is informative about θ0 ∈ {0, 1}. The parameter τ ∈ [0, 1] gives the

relative importance of public information.18 Our main interest in this extension is the

comparative static with respect to τ : Will more public information, for example due to

progress in information technologies or higher-quality news outlets, lead to more or less

informative communication and will this segregate society more or less?

The main mechanisms of our model remain unchanged in such an extension. Public

information, however, crowds out incentives to tell the truth: If we increase the importance

of public information τ , it becomes more tempting to mislead players with different biases.

As private information is relatively less important for high τ , other players respond less

strongly to one’s message (if the message is believed to be truthful) and consequently

players are less disciplined by the danger of misleading their audience “too much”.

Formally, we can show that the truth-telling interval within any room (the equivalent

to the interval from theorem 1 above) is[
b− nR − 1

nR

(p− 1

2
)(1− τ), b+

nR − 1

nR

(p− 1

2
)(1− τ)

]
.

The length of this interval is decreasing in τ , which means that for larger τ fewer players

18This parametrization can be interpreted as a simplified version of a model in which each of n players
receives independent signals about k of in total k ∗ n substates. An increase in τ corresponds to some of
these k signals now being publicly available to all players.
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in a given room are truthtelling. Consequently, it is rational and efficient to segregate

more if τ is higher. In particular, there exists a τ̄ < 1 such that full segregation is optimal

and an equilibrium for all τ ≥ τ̄ .

This suggests an additional mechanism for why segregation occurs and how it may

differ over time and between settings. In communication settings, both private or profes-

sional, where almost all relevant information is private information of the participants, it

may be easier to achieve communication and hence segregation is less useful. But when

the discussion is about national politics, for example, where almost all information is

public and people’s private knowledge and experiences are only a small facet of a larger

whole, more segregation may be desirable.

The results also suggest that progress in information technologies, which make infor-

mation publicly accessible that in earlier times was held only by experts, may lead to less

(truthful) private communication and more segregation. Note, however, that this does

not necessarily imply that players make less informed decision as the additional public

information can more than outweigh the informational loss from less private communica-

tion.

5.2. Uncertainty

So far, we have assumed that all biases bi are common knowledge. This may not always

be the case, especially in environments where communication is somewhat anonymous,

such as on the internet. In such cases, it seems reasonable to assume that both the state

of the world and the types of all players are subject to uncertainty.

Assume that all biases bi are randomly and independently distributed on R according

to distribution Fi. Each player observes his own bias bi, but only knows the distributions

of the biases of other players. The main results of our model generalize to this setting

with a few modifications. Players’ motivations to tell the truth, similar to theorem 1, now

depend on the distance between a player’s realized bias and b̄e, the average of the expected

biases of all players in the same room. Ex ante, the probability with which player i tells the

truth hence depends on how likely it is that the realization of bi lies within that interval

around b̄e. An increase in mean-preserving uncertainty can increase or decrease truth-

telling, depending on whether it shifts probability mass of bi into the relevant interval

around b̄e or out of it. In general, however, we can show for several partial orderings of

uncertainty that a sufficiently large increase in uncertainty will eventually erode all truth-

telling. Such uncertainty would be most prevalent in anonymous, one-shot interactions

such as in online public comment sections.

Uncertainty also has implications for whether segregation is efficient and individually

optimal. Consider two bias groups (as in section 4.2 above) that are close enough to each

other so that full integration is optimal and an equilibrium. Even a small increase in

mean-preserving uncertainty can drastically reduce how much information is exchanged
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in the fully integrated room, as players are now with a high probability too far from the

average expected bias in the room to tell the truth. Segregation, however, may restore

much of the information exchange (or even full truth-telling) in two segregated rooms.

This may be welfare-optimal, especially given that the benefits of truth-telling are not

linear in its probability.19

5.3. (Overlapping) Follower Networks

Our main model restricts how players can associate by only allowing players to join ex-

actly one room, and only to communicate with the other players in that room. We can

soften this assumption by considering a modified model that allows a freer choice of whom

to learn from. Imagine that instead of the room choice stage, all players decide simul-

taneously to “follow” as many of the other players as they like. In other words, players

create a directed communication network where links can be unilaterally created by the

receiver of messages. In the communication stage, players then each send one message

that is received by all of their followers. (This structure is close to how many social media

services work.)

Many of our main results carry over to this extension in a modified way. Similarly to

theorem 1, a player will now tell the truth if and only if his own bias is in the symmet-

ric interval
[
b− nFi

−1

nFi
(p− 1

2
), b+

nFi
−1

nFi
(p− 1

2
)
]
around the average bias of his followers.

(nFi
is the number of followers that i has.) This means that player i always wants to

follow player j unless the very act of following makes j babble. This feature of the best

response implies that the notions of most informative equilibrium and welfare optimal

follower-assignment coincide. We can again show that if polarization increases, segrega-

tion becomes more desirable and it becomes optimal for players to segregate more. If

polarization is low, it is efficient and an equilibrium for everyone to follow everyone –

similar to the fully integrated room in our main model.

This extension has the interesting feature that there are differences between players

with moderate and extreme preferences in how isolated they are from others. Players with

moderate preferences can in equilibrium be followed by much of the population but still

tell the truth, because different players’ influences on b at least partially neutralize each

other. Extremist players, however, can only be followed by other extremists of the same

persuasion, as they would babble if followed by too many moderates or even by extremists

at the other end of the spectrum.

19To illustrate this point, consider a player with a relatively low bias who truthfully reveals σl half of the
time. This means that 75% of the time, he sends the relatively uninformative message l. His messaging
strategy thus partitions the state space much worse than truth-telling. This means that listening to two
players who tell the truth “half of the time” in this way reduces the variance of one’s belief less than
listening to one players who fully tells the truth.
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6. Discussion

6.1. Who provides the Rooms?

In our model, we have assumed that the rooms are available in sufficient quantity so

that players who want to segregate themselves can do so. In reality, that is of course

not guaranteed. Information exchange could literally be impossible for lack of an empty

room, such as when co-workers find themselves unable to discuss sensitive questions in an

open-plan workspace. Bernstein and Turban (2018) have shown that the creation of open-

plan offices tends to decrease the number of (public) face-to-face interactions and increase

the number of (segregated) electronic interactions among colleagues. Or the shortage of

rooms could be more figurative, such as when a politician may want to discuss his doubts

of a policy with colleagues but cannot find a forum in which to do so without potentially

giving ammunition to his political opponents.

In both cases, we have seen that segregation may be in the interest of everybody

involved. It benefits not just the sender and the receiver in the segregated room, but even

those who end up being excluded – since their inclusion would render communication

impossible and thus not benefit anyone. Since rooms provide such clear benefits and are

not automatically available, those in need of them should be willing to pay for whoever

can provide them. We could imagine a group of agents who are sufficiently polarized and

caught together in one place, which makes them unable to exchange any information. If

now a plucky entrepreneur opened a separate room and took a small entrance fee, it would

be an equilibrium for one subgroup of agents to each pay the fee, enter the room – and

improve their own and everybody else’s situation.

We think that this fable provides a way to understand the success of social messaging

platforms such as Facebook, Twitter, WhatsApp and Snapchat. Each of these allows

its users to send messages (and other content) to certain groups of others, with varying

possibilities of exclusion. It can seem from the outside as if the service that is provided is

to connect people with each other, but our model suggests it is just as much to exclude

some people and not others, while providing sophisticated ways to determine who should

and should not be excluded.20 This has a strict economic logic to it: Once the Internet

is available and ubiquitous, simply connecting people is not a scarce resource or service.

But connecting them in such a way that they want to communicate truthfully, and can

exchange the information they want to exchange, is much harder, and those who do it well

can make a profit. Additionally, the resulting group structures are much less portable than

files or contact lists (and often not at all), thus contributing to networking sites’ market

20Facebook, for example, allows its users among other things to (i) choose which of their data is visible
to search engines, (ii) choose for each post and image whether it is visible to everybody or just friends
or friends of friends or even select group of friends (iii) block individual other users from seeing certain
content (iv) create public or private events or groups to which members can be invited, (v) message
directly with selected users or groups of users. All of these are tools of intelligent segregation as well as
connection.
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power.

6.2. Political Parties and “Safe Spaces”

Of course, the room structure need not be provided by the market, it could be created by

the agents themselves so that they can communicate with others who share their interests

and world view. Besides the obvious examples of clubs and societies, we think that this is

one rationale for the existence of political parties. In a society that is polarized enough,

political parties can help solve the problem of aggregating political views and opinions.

We should also note that while messages are meaningless if a player is not truth-telling

in equilibrium, the messages that he is most reluctant to send are those that could be

seen as being counter to his own interest. For example, if an agent’s bi is much lower

than the average of all bj, he has no problem truthfully reporting σl, but is more reluctant

after σh. This is how political parties can be useful: by providing a secluded forum in

which, for example, members of a party can discuss the flaws and merits of their own

candidates or programs. They would not be able to have this kind of discussion in the

presence of members from other parties, where they would become overly defensive of

“their” candidates and programs.

But the problem of defensiveness also provides an argument for so-called “safe spaces”,

i.e. spaces in which minorities or marginalized groups can communicate without outside

interference. Informationally, such safe spaces may provide opportunities to communicate

that would otherwise not exist. Consider the problem of two vegetarians who privately

doubt whether vegetarianism is indeed a sensible choice – yet they find themselves de-

fending it whenever they talk to (or in the presence of) non-vegetarians. Providing a

“safe space” for vegetarians would allow them to discuss freely, and would hence provide

a Pareto-improvement.

6.3. Room Choice as Communication Design

A large literature has recently analyzed the problem of designing socially optimal infor-

mation structures – see, for example, Bergemann and Morris (2019). Such “information

design” commonly assumes that a designer can set a rule by which messages about private

information are chosen. Alternatively, players may themselves be able to commit to such a

disclosure rule, which allows them to communicate truthfully despite a conflict of interest

with the receiver (as in models of “Bayesian Persuasion”, c.f. Kamenica and Gentzkow

2011). Any such design therefore requires that players can either be forced to follow such

rules, or that rule-breaking can be monitored and punished. But in some settings, no

commitment, monitoring or punishment may be available.

Our model shows that truthful communication can still be made possible even between

people who prefer lying to each other, if there are other people in the same room to whom

both players want to tell the truth. Crucially, room composition acts as a commitment
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device by making players want to tell the truth, which means that no objective mechanism

to later compare their messages to the truth is needed. The tools we have developed in

sections 2.2 show how and when such “communication design” is possible.

The term “communication design”, however, should not be understood to mean that

a designer is always needed. As we have shown in section 4, players can often sort into

an efficient allocation themselves (though they may need help in coordinating on one of

many equilibria).

6.4. When are echo chambers bad?

Our argument that echo chambers can be useful does not necessarily mean that they

are beneficial on balance and in every setting. Besides the mechanism that we analyze,

echo chambers may have many other effects. Some of them can be informational, some

behavioral, and some may only occur in settings that are slightly different from ours.

While we believe that the mechanism we describe is very general, a complete assessment

of echo chambers in a given context may well conclude that our mechanism is present but

outweighed by other, detrimental effects. We will discuss some such potential effects; there

are of course others and it is outside the scope of this paper to provide a full assessment

of all effects that echo chambers can have.

Diversity. Our model considers gains from diversity in the sense that one’s information

gets more accurate (and hence one’s decision better), the more people one hears from.

We can thus weigh a well-known benefit of diversity (more information) against its less-

discussed cost (problems with credible communication). An additional line of argument

may assume that information is more closely correlated between people with similar biases

– so that interaction with people with different biases becomes more valuable. Even that,

however, does of course not solve the problem that communication across large preference

differences may still be impossible, no matter how valuable the information that the other

side holds.21 Overall, there is simply no use in meeting people with a very diverse set of

opinions and very useful information, if there is no way to get that information out of

them.

Behavioral arguments. Once they hear only from people who are like them, people may

fail to account for the correlation between the messages they receive.22 Or they may fail

to correctly learn in other, less well-defined ways, all of which make it harder for them to

infer the state of the world from hearing only one side of the story. None of this, however,

means in itself that a person would learn more if also exposed to viewpoints that they

21We consider an extension of a model in which there is only one state, and people with similar bias
receive correlated information about it, in the supplementary material.

22C.f. the experimental work by Kallir and Sonsino (2009) and Eyster and Weizsäcker (2011) on “cor-
relation neglect”.
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would not normally encounter, if their interlocutor rationally adjusts the informativeness

of his message depending on whom he wants to inform and whom not.

Endogenous Polarization One could also assume that preferences, which we take as given

in our model, are actually the result of an endogenous process that depends on whom each

person communicates with. Imagine, for example, that the game in this paper is played

several times in a row, and between stages everybody’s preferences move closer to the

average of the preferences of the people they communicated with in the most recent stage.

Segregated communication could then lead to further polarization, as the preferences of

people who are in different rooms move further and further apart. As long as this process

requires actual communication, however, some segregation may still be optimal, and such

endogenous polarization would simply add another trade-off between getting people to

communicate with each other (which is better than having them all babble) and causing

further polarization down the line. In the long run, we might expect a stabilization of

preferences around a few points, and consequently segregation into rooms, in the welfare

optimum of such a repeated game.

Segregation by taste. There are two ways of applying the insights of this paper. The first,

which we have used in developing our argument, is to see segregation as an informationally

rational and welfare-optimal choice. Another perspective would be to assume that people

segregate for exogenous or emotional reasons, or simply for reasons of taste. For example,

rich people live in rich neighborhoods because of nicer houses and better infrastructure,

and the segregation of types is only a secondary effect. But is such segregation necessarily

informationally inefficient and bad for welfare? Our model suggests that this need not

be the case. While rich people could surely learn from exchanging information with

people whose lifestyle is different from theirs, it is far from given that such communication

successfully takes places if we simply bring rich and poor together.23 Even taste-based

homophily can end up improving everyone’s information.

Malicious actors. Our model is optimistic in the sense that while players want to mislead

each other, they have an abstract interest in a well-informed society since it reduces the

variance of people’s mistakes. In reality, online “bots” and “trolls” may be interested in

simply increasing uncertainty and chaos, both on behalf of state- and non-state actors.

Similarly, (social) media companies may find that misinformation creates engagement

even though it does not decrease (or even increases) the variance of people’s actions. In

both of these cases, segregation into echo chambers could help these actors in spreading

23Policies that may be more successful, following the results of our model, are: Narrowing the conflict of
interest between rich and poor; convincing them that they have common goals; or reducing the uncertainty
about each other’s interests.
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misinformation, in particular if receivers cannot correctly deduce the motivations of a

message’s sender.

7. Conclusion

Modern democratic societies have three main mechanisms to aggregate information: De-

bates, markets, and votes. Of the three, debate is arguably the oldest – and while the

other two require an organized framework and somebody who can enforce the rules, debate

just needs an ability to speak and to listen.

But when will people speak truthfully (and hence have reason to listen)? In this paper,

we have argued that if people have different preferences as well as different information,

segregation into like-minded, homogeneous groups can be individually rational and Pareto-

efficient. Echo chambers are not necessarily as destructive as popular discourse can make

them seem. But even more importantly, we have shown that if segregation happens, it is

not in itself the cause of an inability to debate. Instead, the existence of echo chambers is

the consequence of differences in preferences, and of uncertainty and mistrust about other

people’s motives.

This has implications for how to improve debate. Society has a lot to gain from getting

people with diverse backgrounds, experiences and opinions to exchange their views. But

this cannot simply be achieved by forcing or cajoling people to interact who would not

do so out of their own choosing. In fact, that could be counter-productive, as it could

destroy disjoint groups in which communication works, in favor of large integrated groups

in which it does not. Our research suggests that meaningful debate can only happen if the

participants feel that they have enough in common and they trust each others’ motives.

Debate is more than putting people into a room and expecting them to come out smarter.
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Appendix

A. Proofs

This appendix contains only the proofs for results that are explicitly given in the main

text; all other results and their proofs can be found in the supplementary material.

Proof of lemma 1 on page 10.

Let (m1, . . . ,mn) be an equilibrium. Player i’s expected payoff when sending message mi

to players in room Ri can be written as

Ui(mi|σi) = E

−(ai(m−i,Ri
, σi)− bi −

n∑
k=1

θk

)2

− α
∑
j ̸∈Ri


(
aj(m−i,Rj

, σj)− bi −
n∑

k=1

θk

)2


−α
∑

j∈Ri,j ̸=i


(
aj(mi,m−i,Ri

, σj)− bi −
n∑

k=1

θk

)2

∣∣∣∣∣∣σi

 .

which can be split in a part that is independent of i’s message mi and a part that depends

on mi:

Ui(mi) = E

const− α
∑

j∈Ri,j ̸=i

(
aj(mi,m−i,Ri

, σj)− bi −
n∑

k=1

θk

)2
∣∣∣∣∣∣σi

 .

Specifically, sending message mh gives expected payoff

Ui(m
h) = E

const− α
∑

j∈Ri,j ̸=i

(
bj − bi + µh

ji +
∑
k ̸=i

µjk − θi −
∑
k ̸=i

θk

)2
∣∣∣∣∣∣σi


where µh

ji = E[θi|mi = mh] , i.e. µh
ji is the expectation of a player j in the same room as i

concerning θi if player i sends message mh. Note that this expectation is the same for all

players j ̸= i in the same room as i. Sending message ml gives

Ui(m
l) = E

const− α
∑

j∈Ri,j ̸=i

(
bj − bi + µl

ji +
∑
k ̸=i

µjk − θi −
∑
k ̸=i

θk

)2
∣∣∣∣∣∣σi


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where µl
ji = E[θi|mi = ml]. The difference in expected payoff is then

∆Ui(σi) = (Ui(m
h)− Ui(m

l))/α

= −
∑

j∈Ri,j ̸=i

E

[
µh
ji

2 − µl
ji

2
+ 2(µh

ji − µl
ji)

(
bj − bi +

∑
k ̸=i

µjk − θi −
∑
k ̸=i

θk

)∣∣∣∣∣σi

]

= −2(µh
ji − µl

ji)
∑

j∈Ri,j ̸=i

[
µh
ji + µl

ji

2
+ bj − bi − E [θi|σi]

]

= 2(µh
ji − µl

ji)(nRi
− 1)

[
−
µh
ji + µl

ji

2
−
∑

j∈Ri,j ̸=i bj

nRi
− 1

+ bi + E [θi|σi]

]
(4)

where nRi
denotes the number of players in room Ri. (For the transformation to line 3,

we make use of the fact that µji is the same for all j ∈ Ri.)

Player i is only willing to choose a mixed strategy after receiving signal σi if ∆Ui(σi) =

0. From expression (4) it is clear that this can only be true for at most one signal as

E [θi|σi] varies in σi. Furthermore, Ui(σ
h) = 0 implies Ui(σ

l) < 0 and similarly Ui(σ
l) = 0

implies Ui(σ
h) > 0.

Now suppose i’s equilibrium strategy mi is mixed after signal σh. Then, ∆Ui(σ
h) = 0

implies ∆Ui(σ
l) = 2(µh

ji−µl
ji)(nRi

−1)(1−2p) < 0 and thereforemi(σ
l) = ml which implies

µh
ji = p as amh is only sent by i after receiving signal σh. Consequently, (µh

ji+µl
ji)/2 ≥ 1/2

as µl
ji ≥ 1 − p. Now consider the equilibrium candidate (mt

i,m−i). With the truthful

strategy mt
i, µ

th
ji = p and µtl

ji = 1− p and therefore (µth
ji + µtl

ji)/2 = 1/2. This implies that

∆Ui(σ
h) > 0 in the equilibrium candidate (mt

i,m−i), i.e. truthful reporting is optimal

for i after receiving signal σh. In the equilibrium candidate (mt
i,m−i), truthful messaging

is still optimal after signal σl as well: From p > 1/2, µh
ji ≤ p and µl

ji ≤ 1/2 it follows

that −1/2 + (1 − p) < −
(
µh
ji + µl

ji

)
/2 + p. As in the original equilibrium (mi,m−i) we

had ∆Ui(σ
h) = 0 and therefore −

(
µh
ji + µl

ji

)
/2 + p =

∑
j∈Ri,j ̸=i bj/(nRi

− 1) + bi, we get

that −1/2 + 1 − p <
∑

j∈Ri,j ̸=i bj/(nRi
− 1) + bi and therefore Ui(σ

l) < 0 in the truthful

equilibrium candidate (mt
i,m−i). Hence, truthful messaging is i’s best response in the

equilibrium candidate (mt
i,m−i). Finally, note that the ∆Uj(σj) for j ̸= i is not affected

by changing i’s strategy from mi to mt
i. Hence, (m

t
i,m−i) is an equilibrium.

The argument in case i’s strategy is mixed after signal σl is analogous.

Proof of theorem 1 on page 11.

Consider again the difference between lying and truth-telling for player i that we con-

sidered in equation (4) in the proof of lemma 1. Following corollary 1, we only consider

pure strategies and therefore for every non-babbling player µh
ji = p and µl

ji = 1− p which
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implies that ∆Ui(σ
h) ≥ 0 simplifies to

1

nR − 1

∑
j∈Ri,j ̸=i

(bi − bj) ≥ 1

2
− p

bi −
1

nR − 1

∑
j∈Ri,j ̸=i

bj ≥ 1

2
− p

nR

nR − 1
bi −

1

nR − 1

∑
k∈Ri

bk ≥ 1

2
− p

bi ≥ b− nR − 1

nR

(
p− 1

2

)
.

If this inequality does not hold, player i will not use the truthful strategy in the most

informative equilibrium and by corollary 1 this implies that he will babble in the most

informative equilibrium.

We can analogously solve for ∆Ui(σ
l) ≤ 0 and get the interval used in the theorem.

Proof of proposition 1 on page 12.

Denote the sets of babbling and truthful players in roomRj asR
bab
j andRtruth

j , respectively.

For a given room allocation, the expected payoff of player i in room Ri is

Ui = −E

 ∑
j∈Rtruth

i ∪{i}

(µij − θj) +
∑

j ̸∈Rtruth
i ∪{i}

(
1

2
− θj)

2

+α
∑

j∈Ri,j ̸=i

bj − bi +
∑

k∈Rtruth
i ∪{j}

(µjk − θk) +
∑

k ̸∈Rtruth
i ∪{j}

(
1

2
− θk)

2

+α
∑
j ̸∈Ri

bj − bi +
∑

k∈Rtruth
j ∪{j}

(µjk − θk) +
∑

k ̸∈Rtruth
i ∪{j}

(
1

2
− θk)

2 .

For any i ̸= j, the two values of θi and θj are independent; the same is true for µij and

µik. Hence E [µij − θj] = 0 and E [(µij − θj) (µik − θk)] = 0, which means that the above

expression can be rewritten as

Ui = −
∑

j∈Rtruth
i ∪{i}

E
[
(µij − θj)

2
]
−

∑
j ̸∈Rtruth

i ∪{i}

E
[
(
1

2
− θj)

2

]

−α
∑

j∈Ri,j ̸=i

(bj − bi)
2 − α

∑
j∈Ri,j ̸=i

∑
k∈Rtruth

i ∪{j}

E
[
(µjk − θk)

2
]
− α

∑
j∈Ri,j ̸=i

∑
k ̸∈Rtruth

i ∪{j}

E
[
(
1

2
− θk)

2

]

−α
∑
j ̸∈Ri

(bj − bi)
2 − α

∑
j ̸∈Ri

∑
k∈Rtruth

j ∪{j}

E
[
(µjk − θk)

2
]
− α

∑
j ̸∈Ri

∑
k ̸∈Rtruth

i ∪{j}

E
[
(
1

2
− θk)

2

]
.
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Now note that E [(µjk − θk)
2] can have two possible values: If k ∈ Rtruth

j ∪ {j}, i.e. if
j has received information about θk, then E [(µjk − θk)

2] = p(1− p). If j has not received

information about θk, then E [(µjk − θk)
2] = 1

4
. (We can check that information always

reduces variance and increases welfare since p > 1
2
and hence p(1− p) < 1

4
.)

This means that if i is telling the truth, we can write

U truth
i = −α

∑
j ̸=i

{(bj − bi)
2} − 1

4
[n+ α(n− 1)n]

+(
1

4
− p(1− p))

[
ntruth
Ri

+ α
∑
R

{
ntruth
R ntruth

R + (nR − ntruth
R )(1 + ntruth

R )
}
− αntruth

Ri

]
.(5)

The first term represents the loss that i suffers because other players choose a decision

that is by bj−bi too high from i’s point of view. The second term represents the (theoreti-

cal) loss that would result if no player had any information and all µ’s were simply 1
2
. The

factors n and (n− 1)n, which sum up to n2, represent the total number of possible pieces

of information in the model: If everybody’s signal was available to everyone, n people

would receive n pieces of information. The term hence represents, for each potential piece

of information, the loss to i of that information not being available.

This loss is mitigated by information, which we see in the second line: i receives his

signal and ntruth
Ri

− 1 truthful messages, which means that instead of 1
4
, on each of these

pieces of information i loses only p(1 − p) < 1
4
. Other players, about whose decisions

i cares with weight α, also receive some signals/messages: in any given room R, ntruth
R

players receive their own signal and ntruth
R − 1 truthful messages while nR − ntruth

R players

(those that babble in R) receive ntruth
R truthful messages and their own signal. (We have

to subtract the correction term −αntruth
Ri

for room Ri in which there are only ntruth
Ri

− 1

other players who tell the truth – in other words, i cannot count himself again as one of

the players who receive information.) Analogously, we can write

U bab
i = −α

∑
j ̸=i

{(bj − bi)
2} − 1/4 [n+ α(n− 1)n]

+(1/4− p(1− p))

[
1 + ntruth

Ri
+ α

∑
R

{
ntruth
R ntruth

R + (nR − ntruth
R )(1 + ntruth

R )
}

− α(1 + ntruth
Ri

)

]
. (6)

In both the expressions for U truth
i and U bab

i , the second lines are adjusting the (pes-

simistic) expression in the first line for the reduction in variance by information. We can
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simplify both expressions by simply writing

Ui = −α
∑
j ̸=i

{(bj − bi)
2} − 1/4 [n+ α(n− 1)n] + (1/4− p(1− p))

[
ζi + α

∑
j ̸=i

ζj

]
(7)

and express welfare as

W =
∑
i

Ui =
∑
i

[
−α
∑
j ̸=i

{(bj − bi)
2} − 1/4 [n+ α(n− 1)n] + (1/4− p(1− p))

[
ζi + α

∑
j ̸=i

ζj

]]

= −α

n∑
i=1

∑
j ̸=i

{(bj − bi)
2} − 1

4
n2 [1 + α(n− 1)] + (p− 1

2
)2(1 + α(n− 1))

∑
i

ζi.

In this expression, all terms are model parameters except for the sum over all ζi, which

shows that welfare is linearly increasing in
∑

i ζi.

Proof of theorem 3 on page 19.

Recall that a truth-telling equilibrium exists if and only if for every player i it is∣∣∣∣∣∑
k ̸=i

{bk/(n− 1)} − bi

∣∣∣∣∣ ≤ 1

2
.

This can be rewritten as |
∑

k{bk} − nbi| /(n − 1) ≤ 1
2
. If η is sufficiently small, this

inequality holds for all players and all signals. Clearly, having all players in one room and

telling the truth is welfare optimal whenever it is feasible, and no player can gain from

leaving the room.

If
∣∣∣∑k∈Ri,k ̸=i{bk/(n− 1)} − bi

∣∣∣ > 1
2
, then i will not be truthful when receiving either

signal σl or σh. Generically,
∣∣∣∑k∈Ri,k ̸=i{bk/(n− 1)} − bi

∣∣∣ ̸= 0 for any room configuration

containing players from more than one bias group. (This follows from the finiteness of

players which implies that the number of such room configurations is finite.) Now observe

that the left hand side of the non-truthtelling inequality is scaled by η while the right

hand side is not. That is, for η sufficiently high, player i will report the highest (lowest)

signal in all rooms in which
∑

k∈Ri,k ̸=j bk < nRi
bi (
∑

k∈Ri,k ̸=j bk > nRi
bi). Put differently,

any room that contains one or more players of a bias not equal to bi will lead to totally

uninformative messages by i if η is sufficiently high. For high enough η, this holds true

for all players and it is then obvious that full separation is both welfare maximizing and

an equilibrium.
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Proof of proposition 2 on page 20

Take two values of η, namely η′ and η′′ > η′. Denote a welfare optimal room assignment

under η′′ by R′′. Consider the same room assignment R′′ with biases η′. In each room

the number of pieces of information is weakly higher with set of biases Bη′ than with set

of biases Bη′′ : By theorem 1 a player i is truthtelling if and only if ηb −
nR′′

i
−1

nR′′
i

(p − 1
2
) ≤

ηbi ≤ ηb+
nR′′

i
−1

nR′′
i

(p− 1
2
). Hence, player i will be truthtelling in room R′′

i with biases in Bη′

if he is truthtelling in R′′
i with biases Bη′′ by η′ < η′′. Consequently, there is weakly more

information transmitted in every room given assignment R′′ under η′ than under η′′ > η′.

This implies W (η′) ≥ W (η′′) by proposition 1.

B. Bipolar polarization – step-by-step derivation of the results

We denote by n0 (nb) the number of people with bias 0 (b) and without loss of generality

we let n0 ≥ nb.

B.1. Segregation and full information as equilibrium

First, we ask the question when segregation, i.e. all players with bias bi = 0 choosing room

1 and all players with bias bi = b choosing room 2, is an equilibrium. Clearly, every player

is truthtelling in the most informative messaging equilibrium in this case and player i’s

expected payoff is

U fs
i = −αn−ib

2 − 1/4 [n+ α(n− 1)n] + (1/4− p(1− p))
[
(1− α)ni + αn2

i + αn2
−i

]
(8)

where ni is the number of players with the same bias as player i and n−i is the number

of players with the other bias.

Proposition 3. A segregation equilibrium exists if and only if one of the two following

condition is met: (i) b > n0(p−1/2), (ii) p−1/2 < b ≤ n0(p−1/2) and n0 ≤ (1+α)(nb−1).

Proof of proposition 3: Consider the incentives of player i to unilaterally deviate in

his room choice in a segregation situation. There are three relevant cases that we will

consider in turn: (i) after the deviation everyone including i still sends truthful messages,

(ii) after the deviation i will babble but the players in the room he is switching to still

send truthful messages and (iii) i’s room switch leads to babbling by all players in the

room he is switching to.

First, truthful messages after switch. This occurs if and only if b ≤ p− 1/2. If i’s bias

group is the (weakly) smaller group, then i will benefit from a room switch in this case,

see equation (8). Hence, segregation does not exist as equilibrium if b is less than p−1/2.

Second, i babbles after the switch but everyone else remains truthtelling. This happens
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if and only if p− 1/2 < b ≤ n−i(p− 1/2). In this case, i’s deviation payoff is

Ud
i = −αn−ib

2 − 1/4 [n+ α(n− 1)n] + (1/4− p(1− p))
[
1 + n−i + αn2

−i + α(ni − 1)2
]

which is higher than U fs
i if and only if n−i > (1 + α)(ni − 1). Clearly, the members

of the smaller group are the ones for who this constraint is more stringent. That is, a

segregation equilibrium exists given p − 1/2 < b ≤ n−i(p − 1/2) if and only if n0 is at

most 1 + α(nb − 1). Intuitively, members of the smaller group have a lot of information

to gain form a switch if the larger group is very large. Hence, a segregation equilibrium

only exists if the larger group is not too large.

Third, the switch leads to complete babbling in the room switched to. This will occur

if and only if b > n−i(p−1/2). In this case, it is obvious that the deviation is unprofitable

and a segregation equilibrium exists.

Next we check for which parameter values a full information equilibrium, i.e. all players

choosing the same room and reporting their signal truthfully, exists. Then, truthful

reporting is an equilibrium of the messaging game if and only if b(1− (nb − 1)/(n− 1)) ≤
p−1/2 which is equivalent to bn0/(n−1) ≤ p−1/2. It is obvious that unilateral deviations

in room choice from a fully integrated room are not profitable whenever truthtelling is

by all players is an equilibrium in this room. We state this below as formal result and

illustrate the results on full segregation and full information in figure 6.24

Proposition 4. A full information equilibrium exists if and only if bn0/(n− 1) ≤ p− 1/2.

1 n−1
n0

n0

full info eq. exists no full info eq.

seg

exists

seg existsseg does

not exists if n0

nb−1
≤ 1 + α

b
p−1/2

Figure 6: Segregation and full information as room choice equilibria

B.2. Intermediate results on welfare optimal room allocation

We will now consider how a planner would assign players to rooms in order to maximize the

sum of players’ payoffs. The planner’s only tool is room assignment knowing the players’

biases, i.e. the planner does not observe signals and cannot influence the messages sent

or actions taken by the players.

From equation (3), it is clear that the planner’s objective is equivalent to maximizing∑
i ζi, i.e. the total number of pieces of information by all players. We proceed in a

24Note that (n− 1)/n0 ≤ n0 as n0 ≥ n/2 and n ≥ 2.
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number of lemmas. To avoid case distinction, we use the convention that a player who is

alone in a room will send a truthful message.

Lemma 1. There is a welfare optimal room assignment without a room in which all players

babble.

Proof of lemma 1: In such a room there would be at least one player of each bias type.

Splitting the room into two according to bias type would lead to weakly more transmitted

pieces of information.

Lemma 2. Assume there are two rooms R1 and R2 such that in equilibrium players with

bias x ∈ {0, b} send truthful messages in both rooms. Then players with bias x will also

send truthful messages in a merged room R1 ∪R2.

Proof of lemma 2: As players send truthful messages by assumption in room Ri for

i ∈ {1, 2},
b

p− 1/2
nRi,−x ≤ nRi

− 1

has to hold where nRi,−x is the number of players in room Ri who do not have bias x.

Summing this inequality over the two rooms i = 1, 2 yields

b

p− 1/2
(nR1,−x + nR2,−x) ≤ nR1 + nR2 − 2

which is sufficient for

b

p− 1/2
(nR1,−x + nR2,−x) ≤ nR1 + nR2 − 1.

The latter inequality implies that truthful messages in room R1 ∪ R2 are optimal for

players with bias x.

Corollary 3. The welfare maximizing room assignment will not include rooms R1 and R2

such that either

• both R1 and R2 are both populated exclusively by players with bias x ∈ {0, b}, or

• both R1 and R2 are populated by players with both biases and all players send truthful

messages, or

• R1 and R2 are populated by players with both biases and only the players with bias

x ∈ {0, b} send truthful messages, or

• R1 is exclusively populated by players with bias x ∈ {0, b} and R2 is populated by

players with both biases but only players with bias x send truthful messages in R2.
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Proof of corollary 3: In each of these cases, merging the two rooms maintains truthtelling

incentives for those that originally sent truthful messages by lemma 2. As the truthful

messages are received by more players, merging clearly increases the planner’s objective.

Lemma 3. The welfare maximizing room assignment will not include rooms R1 and R2

such that both rooms contain players of each bias and all players in R1 send truthful

messages while only players of bias x ∈ {0, b} send truthful messages in R2.

Proof of lemma 3: First, we consider the case where more players are in room R1, i.e.

nR1,x + nR1,−x ≥ nR2,x + nR2,−x. Note that the number of pieces of information generated

in those two rooms is n2
R1 + nR2,x (nR2,x + nR2,−x). Note that nR2,x > nR2,−x as otherwise

x would not be truthtelling in R2 while −x is not. Consider now an alternative room

assignment that differs from the original one in the way that nR2,−x players of each bias

are moved from R2 to R1. Denote everythign after the change using ·̃. That is, R̃2

will contain nR2,x − nR2,−x players of bias x and none of bias −x while R̃1 will contain

nR1,x + nR2,−x players of bias x and nR1,−x + nR2,−x of type −x. The crucial result is that

all players in room R̃1 find truthtelling optimal: As truthtelling was optimal for players

of both biases by assumption in R1,

b

p− 1/2
≤ nR1 − 1

max{nR1,x, nR1,−x}
.

Now note that

nR1 − 1

max{nR1,x, nR1,−x}
≤ nR1 − 1 + 2nR2,−x

max{nR1,x + nR2,−x, nR1,−x + nR2,−x}

as the latter fraction is increasing in nR2,−x and therefore truthtelling is still optimal in

R̃1. Clearly, truthtelling is also optimal in R̃2 as only players with bias x are left there.

Consequently, the total number of pieces of information in R̃1 and R̃2 is (nR1 + 2nR2,−x)
2+

(nR2,x − nR2,−x)
2 which, by nR1 ≥ nR2 > nR2,x, is strictly greater than the number of

pieces of information generated by rooms R1 and R2. Hence, the planner prefers the room

assignment R̃1, R̃2 over the room assignment R1 and R2 (keeping room assignment for

players not in those rooms fixed).

Second, consider the case where more players are in room R2, i.e. nR1,x + nR1,−x <

nR2,x + nR2,−x. In this case, we argue that merging the two rooms to R1 ∪ R2 will yield

more information than keeping them separate. By lemma 2, players with bias x will still

be truthtelling in room R1 ∪ R2. Assume that players with bias −x will not tell the

truth in R1 ∪ R2 (otherwise merging the two rooms is clearly optimal). Note that this

implies nR1,x + nR2,x > nR1,−x, nR2,−x as players with bias x tell the truth in R1 ∪R2 and

players with bias −x do not. The number of pieces of information generated in R1 ∪ R2
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is then (nR1,x + nR2,x) (nR1,x + nR2,x + nR1,−x + nR2,−x). This is greater than the number

of pieces of information generated in R1 and R2 separately as

n2
R1,x

+ 2nR1,xnR2,x + nR1,xnR1,−x + nR1,xnR2,−x + n2
R2,x

+ nR2,xnR1,−x + nR2,xnR2,−x

> n2
R1,x

+ 2nR1,xnR1,−x + n2
R1,−x + n2

R2,x
+ nR2,xnR2,−x

⇔ 2nR1,xnR2,x − nR1,xnR1,−x + nR1,xnR2,−x + nR2,xnR1,−x − n2
R1,−x > 0

⇔ −nR1,−xnR1 + nR1,xnR2 + nR2,xnR1 > 0

which holds true by nR1 < nR2 and nR1,x + nR2,x > nR1,−x, nR2,−x. Consequently, the

planner would prefer R1 ∪R2 to R1 and R2 separately.

Lemma 4. In a welfare maximizing room allocation, the following cannot occur: There

are three rooms R0 populated only of players with bias 0, Rb populated only with players

of bias b and Rm populated with players of both biases.

Proof of lemma 4: If Rm induces babbling, it is clearly better to assign the bias 0 (b)

players in there to R0 (Rb) instead. If only players with bias x ∈ {0, b} send truthful

messages in Rm, then it is clearly better to merge this room with Rx which maintains

truthtelling incentives for players with bias x, see lemma 2.

Hence, we only have to consider the case where players with both biases send truthful

messages in Rm. For concreteness assume there are more players in R0 than in Rb denoted

by nR0 ≥ nRb
(the reverse case is analyzed analogously). We consider two cases in turn.

First, consider nR0 ≥ nRm + nRb. We claim that merging Rm and R0 will then lead to

more information than keeping these rooms separate. By lemma 2, player with bias 0

will still be truthtelling in R0 ∪Rm and the number of pieces of information generated by

rooms Rb and R0∪Rm is at least n2
Rb

+(nR0 +1)(nRm +nR0) which is strictly higher than

the number of pieces of information generated by R0, Rb and Rm, i.e. n2
Rb

+ n2
R0

+ n2
Rm

,

as nR0 + 1 > nm.

Second, consider nR0 < nRm + nRb
. The following change in the room allocation

creates more information: Move nRb
players from Rb and nRb

players from R0 to Rm.

This leaves no one in Rb, nRm + 2nRb
in Rm and nR0 − nRb

players in R0. As in the proof

of lemma 3, the move maintains truthtelling incentives for players in Rm. The number

of pieces of information generated after the move is (nRm + 2nRb
)2 + (nR0 − nRb

)2 =

n2
Rm

+ 4nRb
nRm + 5n2

Rb
+ n2

R0
− 2nR0nRb

which is higher than the number of pieces of

information generated by R0, Rb and Rm without the move, i.e. n2
Rb

+ n2
R0

+ n2
Rm

, by

nR0 < nRb
+ nRm .

Corollary 4. The welfare optimal room assignment consists of at most two rooms and at

most one room in which players of both biases are present.
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Proof of corollary 4: This follows from the combination of corollary 3 and lemmas 1, 3

and 4.

B.3. Welfare optimal room allocation and equilibrium

Corollary 4 (and the preceding lemmas) leave the following possibilities for welfare optimal

room assignment:

• segregation: each bias group has its own exclusive room.

• full integration: one room for all players

• mix: one room exclusively with players of bias x and one room with both bias types

in which either

– only players of type −x send truthful messages

– all players send truthful messages.

The idea behind the mix situation is the following: If there are more players with

bias −x than players with bias x and assigning all players to one room would lead to

babbling, then it can be optimal not to separate completely but to assign some players

of the minority x to the majority room −x. The x players will babble there but they

receive a lot of information (truthful messages of all the −x players). If such a situation

is optimal, then clearly it must be the case that assigning one more minority player to

the mixed room would lead to babbling. This is the first mixed assignment possibility.

The second mixed assignment possibility refers to a situation where the minority bias

group would babble if all players were in one room while the majority would send truthful

messages. In this case, taking some players of the majority to a separate room can restore

truthtelling by both groups in the mixed room and might be optimal.

As should be clear from the discussion above, the mixed scenario is only welfare opti-

mal if the group sizes differ. With equal group sizes either segregation or full integration

is optimal. Which of the two is optimal depends on whether the bias difference b is suffi-

ciently small to obtain truthtelling in a fully integrated room. While it is straightforward

to prove this directly, we will here prove the more general theorem 2 and come back to

the special case of equal group sizes afterwards.

Proof of theorem 2 on page 16.

By corollary 4, we can focus on at most two rooms in the welfare optimal room assignment.

If b/(p−1/2) ≤ (n0+nb−1)/n0, then full information, i.e. all players in one room and

every player sends a truthful message, is feasible and a single room is obviously welfare

optimal.
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If (n0 + nb − 1)/n0 < b/(p − 1/2) ≤ (n0 + nb − 1)/nb (which is only possible if

n0 > nb), then players with bias b would babble in a single room. It is important to

notice that segregation cannot be optimal in this situation: segregation leads to n2
b + n2

0

pieces of information while in one single room there would still be n0 ∗ (n0 + nb) pieces

of information which is greater than n2
b + n2

0 by n0 > nb.
25 Consequently, there are two

options for the welfare maximal room assignment. Either all players are in one single room

and babbling by players with bias b is tolerated or some players with bias 0 are assigned

to a separate room in order to balance the mixed room and restore truthtelling incentives

for the bias b players. The maximal number of bias 0 players that can remain in the mixed

room without inducing babbling by bias b players is nm0 = ⌊(nb − 1)/(b/(p− 1/2)− 1)⌋.
Furthermore, truthtelling by the majority group clearly also requires that players with

bias 0 are (weakly) in the majority. Hence, consider for now nm0 ≥, nb. The number

of pieces of information in the scenario with nm0 bias 0 players and all bias b players in

one room and n0 − nm0 bias 0 players in a separate room is (nb + nm0)
2 + (n0 − nm0)

2.

Whether this is higher or lower than the number of pieces in a fully integrated room,

i.e. n0(n0 + nb) + nb, depends on the parameters. In particular, if b/(p− 1/2) is close to

the lower boundary (and nb is not too small), two rooms will be optimal as nm0 will be

relatively high. If b/(p − 1/2) is close to the upper boundary, however, nm0 will be low

and one room with babbling by the minority will be optimal. Finally, if nm0 < nb, then

babbling by one group occurs in any mixed room and therefore it is optimal to have one

integrated room in which the minority players babble.

Finally, we consider b/(p−1/2) > (n0+nb−1)/nb. In this case, even the bias 0 players

will babble if all players are in one room. This implies that putting some bias zero players

in an own separate room will no longer help: All the remaining bias zero players would

have even higher incentives to babble and it would be more informative to fully separate

the two bias groups. Consequently, only two options remain: Either the just mentioned

segregation or enough bias b players are assigned to an own separate room to restore

truthtelling incentives for the bias 0 players in the mixed room. The maximum number of

bias b players that can remain in the mixed room without destroying truthtelling by bias

0 players is nmb = ⌊(n0−1)/(b/(p−1/2)−1)⌋. This yields n0(n0+nmb)+nmb+(nb−nmb)
2

pieces of information which can, depending on the parameters, be higher or lower than

the n2
0 + n2

b pieces of information created by segregation.

It remains to check when the welfare optimal room assignment constitutes an equilib-

rium of the game. If full information is feasible, i.e. if b/(p−1/2) ≤ (n0+nb−1)/n0, then

it is clearly an equilibrium. For (n0 + nb − 1)/n0 < b/(p − 1/2) ≤ (n0 + nb − 1)/nb, the

welfare optimal room assignment is definitely an equilibrium if it is optimal to keep all

players in the same room (and have the smaller group babbling): The point is that this can

25Similarly, it is not optimal to put only some bias b players into their own room: As nb ≤ n0, they
would have less information there than they would have if they were babbling in one single room.
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only be optimal if isolating one player of the larger group would not lead to truthtelling in

a room with all other players. (If this was the case, then isolating one player of the larger

group would be optimal.) But this implies that any deviation in room choice from the sit-

uation with one big mixed room will lead to less information for the deviating player and

less (or the same) information for the other players. Following (3), such a deviation will

therefore reduce the deviating player’s expected payoff. Hence, the welfare maximizing

room assignment is an equilibrium if (n0+nb−1)/n0 < b/(p−1/2) ≤ (n0+nb−1)/nb and

(nb+nm0)
2+(n0−nm0)

2 ≤ n0(n0+nb). For the case (nb+nm0)
2+(n0−nm0)

2 > n0(n0+nb)

where two rooms are optimal – one mixed room with truthtelling by all players and one

with only players of the larger group – the relevant question is whether the n0−nm0 play-

ers in the room only for bias 0 players would want to deviate to the mixed room. Note

that this deviation will destroy truthtelling by the bias b players. However, a unilaterally

deviating player will obtain information from nm0 other players which is more information

than the n0 − nm0 − 1 truthful messages he obtains when not deviating.26 It is therefore

unsurprising that the welfare optimal room assignment will only be an equilibrium if α is

sufficiently high. Using (3), the deviation will not be profitable if and only if it decreases

ζi + α
∑

j ̸=i ζj. This is the case if and only if

nm0 + 1 + α
(
(n0 − nm0 − 1)2 + (nm0 + 1)(nb + nm0)

)
≤ n0 − nm0 + α

(
(n0 − nm0 − 1)(n0 − nm0) + (nm0 + nb)

2
)
.

⇔ α ≥ 2nm0 − n0 + 1

n0 − 2nm0 − 1 + n2
b + nb(nm0 − 1)

. (9)

Hence, if (n0+nb−1)/n0 < b/(p−1/2) ≤ (n0+nb−1)/nb and (nb+nm0)
2+(n0−nm0)

2 >

n0(n0 + nb) as well as nm0 ≥ nb, the welfare optimal room assignment is an equilibrium if

and only if (9) holds.

For b/(p− 1/2) > (n0+nb− 1)/nb, the welfare optimal room assignment can be either

a mixed room combined with a room exclusively for the smaller group or segregation. In

the first case it is straightforward to see that this is an equilibrium. Recall that moving

one more player from the separate room to the mixed room would lead to babbling by all

players in the mixed room. Clearly, such a deviation is not profitable. In the second case,

we already showed before that total separation is an equilibrium if either b/(p−1/2) ≥ n0

or α ≥ (1 + n0 − nb)/(nb − 1).

Note that for b/(p− 1/2) > n0 we get nbm = 0 and in this case segregation is always

26To see this, first note that nm0 ≥ nb as no truthtelling mixed room exists if bias b players were not
truthtelling in a perfectly balanced, i.e. same number of players from each bias group, room. Then note
that (nb+nm0)

2+(n0−nm0)
2 > n0(n0+nb) is more demanding for higher n0 (keeping other parameters

fixed). It is straightforward to calculate that the inequality cannot be satisfied (given nb ≤ nm0) for
n0 ≥ 5nm0/3. Hence, nm0 ≥ 4n0/5 whenever this room assignment is welfare maximizing which implies
nm0 > n0 − nm0 − 1.
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welfare optimal. Furthermore, an increase in b/(p − 1/2) will decrease both nm0 and

nmb. This implies that we can simply step through the different cases of theorem 2 as

b/(p− 1/2) increases. However, depending on parameter values, in particular n0 and nb,

some of the cases may be skipped. However, the first and last case will never be skipped

as they always occur for sufficiently low, respectively high, values of b/(p− 1/2).

If the welfare optimal room allocation is not an equilibrium, then the welfare optimal

equilibrium features too little segregation: In case (2b), the equilibrium has all players

in a single room while the welfare optimal allocation has two rooms. In case (3b), the

welfare optimal room allocation is full segregation which is not an equilibrium.

To illustrate, consider the special case of equal group sizes, i.e. n0 = nb = n/2. This

rules out case (2) of theorem 2. Furthermore, the condition defining case (3a) is not met

as it can be rewritten as nmb+1−n/2 ≥ 0 but given the condition b/(p−1/2) > (n−1)/nb

of case (3) nmb < n/2− 1 and therefore case (3a) is not possible if nb = n0 = n/2. Hence,

only case (1) and (3b) remain with equal group sizes and therefore the welfare optimal

room allocation is either full segregation or full integration in this case. Full integration

is welfare optimal if b/(p − 1/2) ≤ (n − 1)/(n/2) and is also an equilibrium in this case.

If b/(p − 1/2) > (n − 1)/(n/2), segregation is welfare optimal but only an equilibrium if

α ≥ 1/(n/2− 1). Otherwise, there is too little segregation in equilibrium.
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